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Abstract
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Chapter 1

Introduction

This document describes how to write your own plugins. The documentation has grown quite
large over time. Do not let that scare you. We recommend reading through the four basic steps
(as outlined, below), to get a basic idea of how things work. After that you may want to skim the
table of contents to see which advanced topics could be of relevance to you.

For questions and comments, please write to the RKWard development mailing list.

You do not need to read this in order to use RKWard. This document is about extending RKWard. It
is targeted at advanced users, or people willing to help improve RKWard.

Writing a standard plugin is basically a four-step process:

• Placing a new Action in the menu hierarchy

• Describing the looks and behavior of the plugin GUI

• Defining, how R-code is to be generated from the settings, the user makes in the GUI

• Adding a help page to your plugin

Those will be dealt with in turn.
Some advanced concepts may be used in those four steps, but are dealt with in separate chapters,
to keep things simple:

• GUI logic

• Embedding Plugins into Plugins

• Useful concepts for creating many series of similar plugins

Also, none of the chapters shows all options, but rather only the basic concepts. A complete
reference of options is provided separately.
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Chapter 2

Preliminaries: What are plugins in
RKWard? How do they work?

Of course the first question you might have is: what portions of RKWard functionality is realized
using plugins? Or: what can plugins do?

One way to answer this is: deselect all .pluginmap files under Settings→ Configure RKWard→
Plugins, and see what is missing. A slightly more helpful answer: most actual statistics functions
accessible via the GUI are realized using plugins. Also, you can create fairly flexible GUIs for all
kinds of operations using plugins.

The basic paradigm behind RKWard plugins is the one we will walk you through in this doc-
ument: an XML file describes what the GUI looks like. An additional JavaScript file is used to
generate R syntax from the GUI settings. That is, plugins do not really have to perform any sta-
tistical calculations. Rather plugins generate the R syntax needed to run those calculations. The R
syntax is then sent to the R backend for evaluation, and typically a result is shown in the output
window.
Read on in the next chapters to see how this is done.
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Chapter 3

Creating menu entries

When you create a new plugin, you need to tell RKWard about it. So the first thing to do, is
to write a .pluginmap file (or modify an existing one). The format of .pluginmap is XML. I will
walk you through an example (also of course, be sure you have RKWard configured to load your
.pluginmap -- Settings→ Configure RKWard→ Plugins):

TIP
After reading this chapter, have a look at the rkwarddev package as well. It provides some R functions
to create most of RKWard’s XML tags for you.

<!DOCTYPE rkpluginmap >

The doctype is not really interpreted, but set it to ˝rkpluginmap˝ anyway.

<document base_prefix="" namespace="myplugins" id="mypluginmap">

The base_prefix attribute can be used, if all your plugins reside in a common directory. Basi-
cally, then you can omit that directory from the filenames specified below. It safe to leave this at
˝˝ .
As you will see below, all plugins get a unique identifier, id. The namespace is a way to organize
those IDs, and make it less likely to create a duplicate identifier accidentally. Internally, basically
the namespace and then a ‘::’ gets prepended to all the identifiers you specify in this .pluginmap.
In general, if you intend to distribute your plugins in an R package, it is a good idea to use the
package name as namespace parameter. Plugins shipped with the official RKWard distribution
have namespace=˝rkward˝ .

The id attribute is optional, but specifying an id for your .pluginmap makes it possible for other
people to make their .pluginmaps load your .pluginmap, automatically (see the section on de-
pendencies).

<components >

Components? Are not we talking about plugins? Yes, but in the future, plugins will be no more
than a special class of components. What we do here, then, is to register all components/plugins
with RKWard. Let’s look at an example entry:

<component type="standard" id="t_test_two_vars" file="t_test_two_vars. ←↩
xml" label="Two Variable t-Test" />

11
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First the type attribute: Leave this to ˝standard˝ for now. Further types are not yet imple-
mented. The id we have already hinted at. Each component has to be given a unique (in its
namespace) identifier. Pick one that is easily recognizable. Avoid spaces and any special charac-
ters. Those are not banned, so far, but might have special meanings. With the file attribute, you
specify where the description of the actual plugin itself is located. This is relative to the directory
the .pluginmap file is in, and the base_prefix above. Finally, give the component a label. This
label will be shown wherever the plugin is placed in the menu (or in the future perhaps in other
places as well).

Typically a .pluginmap file will contain several components, so here are a few more:

<component type="standard" id="unimplemented_test" file="means/ ←↩
unimplemented.xml" />

<component type="standard" id="fictional_t_test" file="means/ttests/ ←↩
fictional.xml" label="This is a fictional t-test" />

<component type="standard" id="descriptive" file="descriptive.xml" ←↩
label="Descriptive Statistics" />

<component type="standard" id="corr_matrix" file="corr_matrix.xml" ←↩
label="Correlation Matrix" />

<component type="standard" id="simple_anova" file="simple_anova.xml" ←↩
label="Simple Anova" />

</components >

OK, this was the first step. RKWard now knows those plugins exist. But how to invoke them?
They need to be placed in a menu hierarchy:

<hierarchy >
<menu id="analysis" label="Analysis">

Right below the <hierarchy> tag, you start describing, in which <menu> your plugins should
go. With the above line, you basically say, that your plugin should be in the Analysis menu (not
necessarily directly there, but in a submenu). The Analysis menu is standard in RKWard, so it
does not actually have to be created from scratch. However, if it did not exist yet, using the label
attribute you would give it its name. Finally, the id once again identifies this <menu>. This is
needed, so several .pluginmap files can place their plugins in the same menus. They do this by
looking for a <menu> with the given id. If the ID does not yet exist, a new menu will be created.
Otherwise the entries will be added to the existing menu.

<menu id="means" label="Means">

Basically the same thing here: Now we define a submenu to the Analysis menu. It is to be called
Means.

<menu id="ttests" label="t-Tests">

And a final level in the menu hierarchy: A submenu of the submenu Means.

<entry component="t_test_two_vars" />

Now, finally, this is the menu we want to place the plugin in. The <entry> tag signals, this
actually is the real thing, instead of another submenu. The component attribute refers to the id
you gave the plugin/component above.

<entry component="fictional_t_test" />
</menu >
<entry component="fictional_t_test" />

</menu >
<menu id="frequency" label="Frequency" index="2"/>

12
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In case you have lost track: This is another submenu to the Analysis menu. See the screenshot
below. We will skip some of what is not visible, marked with [...].

[...]
</menu >
<entry component="corr_matrix"/>
<entry component="descriptive"/>
<entry component="simple_anova"/>

</menu >

These are the final entries visible in the screenshots below.

<menu id="plots" label="Plots">
[...]

</menu >

Of course you can also place your plugins in menus other than Analysis.

<menu id="file" label="File">
[...]

</menu >

Even in standard-menus such as File. All you need is the correct id.

</hierarchy >
</document >

That is how to do it. And this screenshot shows the result:

Confused? The easiest way to get started is probably taking some of the existing .pluginmap files
shipped with the distribution, and modifying them to your needs. Also, if you need help, do not
hesitate to write to the development mailing list.

3.1 Controlling the order of menu entries

By default, all items (entries / submenus) inside a menu will be sorted alphabetically, automati-
cally. In some cases you may want more control. In this case you can group elements as follows:

• You can define groups inside any menu like this. All elements belonging to the same group
will be grouped together:

13
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<group id="somegroup"/>

• If you want the group to be visually separated from other entries, use:

<group id="somegroup" separated="true"/>

• Entries, menus, and groups can be appended to a specified group, using:

<entry component ="..." group="somegroup"/>

• In fact, it is also possible to define groups (without separator lines) implicitly:

<entry component="first" group="a"/>
<entry component="third"/>
<entry component="second" group="a"/>

• Group names are specific to each menu. Group ˝a˝ in menu ˝Data˝ does not conflict with
group ˝a˝ in menu ˝Analysis˝, for example.

• The most common use case is defining groups at the top, or at the bottom of a menu. For this,
there are pre-defined groups ˝top˝ and ˝bottom˝ in each menu.

• Entries within each group are sorted, alphabetically. Groups appear in the order of declaration
(unless appended to another group, of course).

• Menus and entries without group specification logically form a group (˝˝), too.

14
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Chapter 4

Defining the GUI

4.1 Defining a dialog

In the previous chapter you have seen how to register a plugin with RKWard. The most important
ingredient was specifying the path to an XML file with a description of what the plugin actually
looks like. In this chapter you will learn how to create this XML file.

TIP
After reading this chapter, have a look at the rkwarddev package as well. It provides some R functions
to create most of RKWard’s XML tags for you.

Once again we will walk you through an example. The example is a (slightly simplified) version
of the two variable t-Test.

<!DOCTYPE rkplugin >

The doctype is not really interpreted, yet. Set it to rkplugin, anyway.

<document >
<code file="t_test_two_vars.js"/>

All plugins generate some code. Currently the only way to do so is using JS, as detailed in the
next chapter. This defines, where to look for the JS code. The filename is relative to the directory
the plugin XML is in.

<help file="t_test_two_vars.rkh"/>

It is usually a good idea to also provide a help page for your plugin. The filename of that help
page is given, here, relative to the directory, the plugin XML is in. Writing help pages is docu-
mented here. If you do not provide a help file, omit this line.

<dialog label="Two Variable t-Test">

As you know, plugins may have either a dialog or a wizard interface or both. Here we start
defining a dialog interface. The label attribute specifies the caption of the dialog.

<tabbook >
<tab label="Basic settings">

15
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GUI elements can be organized using a tabbook. Here we define a tabbook as the first element
in the dialog. Use <tabbook>[...]</tabbook> to define the tabbook and then for each page in the
tabbook use <tab>[...]</tab>. The label attribute in the <tab> element allows you to specify a
caption for that page of the tabbook.

<row id="main_settings_row">

The <row> and <column> tags specify the layout of the GUI elements. Here you say, that you
would like to place some elements side-by-side (left to right). The id attribute is not strictly
necessary, but we will use it later on, when adding a wizard interface to our plugin. The first
element to place in the row, is:

<varselector id="vars"/>

Using this simple tag you create a list from which the user can select variables. You have to
specify an id for this element, so RKWard knows how to find it.

WARNING
You may NOT use a dot (.) in the id string.

<column >

Next, we nest a <column> inside the row. That is the following elements will be placed above
each other (top-to-bottom), and all will be to the right of the <varselector>.

<varslot types="number" id="x" source="vars" required="true" ←↩
label="compare"/>

<varslot types="number" id="y" source="vars" required="true" ←↩
label="against" i18n_context="compare against"/>

These elements are the counterpart to the <varselector>. They represent ‘slots’ into which the
user can put variables. You will note that the source is set to the same value as the id of the
<varselector>. This means, the <varslot>s will each take their variables from the varselector. The
<varslot>s also have to be given an id. They may have a label, and they may be set to requ
ired. This means that the Submit button will not be enabled until the <varslot> holds a valid
value. Finally the type attribute is not interpreted yet, but it will be used to take care that only
the correct types of variables will be allowed in the <varslot>.

In case you are wondering about the i18n_context-attribute: This is to provide context to help
the correct translation of the word ˝against˝, used as the <varslot>’s label, but does not affect the
functionality of the plugin, directly. More on this in a separate chapter.

<radio id="hypothesis" label="using test hypothesis">
<option value="two.sided" label="Two-sided"/>
<option value="greater" label="First is greater"/>
<option value="less" label="Second is greater"/>

</radio >

Here, you define a group of <radio> exclusive buttons. The group has a label and an id. Each
<option> (button) has a label and is assigned a value. This is the value the <radio> element
will return when the option is selected.

</column >
</row>

</tab>

16
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Each tag has to be closed. We have put all the elements we wanted (the two <varslots> and the
<radio>) in the <column>. We put all elements we wanted (the <varselector> and the <column>
with those elements) in the <row>. And we have put all the elements we wanted into the first
page in the <tabbook>. We are not yet done defining the <tabbook> (more pages to come), and
of course there is more to come in the <dialog>, too. But this screenshot is basically what we
have done so far:

Note that we have not specified the Submit, Close, etc. buttons or the code view. Those ele-
ments get generated automatically. But of course we still have to define the second page of the
<tabbook>:

<tab label="Options">
<checkbox id="varequal" label="assume equal variances" value=", var ←↩

.equal=TRUE"/>

By default elements will be placed top-to-bottom like in a <column>. Since that is what we want
here, we do not have to explicitly state a <row> or <column> layout. The first element we define
is a checkbox. Just like the <radio><option>s, the checkbox has a label and a value. The value
is what gets returned, if the check box is checked. Of course the checkbox also needs an id.

<frame label="Confidence Interval" id="frame_conf_int">

Here is yet another layout element: In order to signal that the two elements below belong to-
gether, we draw a <frame> (box). That frame may have a label (caption). Since the frame is just
a passive layout element, it does not need an id, we still define one here, as we will refer to it
later, when defining an additional wizard interface.

<checkbox id="confint" label="print confidence interval" value ←↩
="1" checked="true"/>

<spinbox type="real" id="conflevel" label="confidence level" min ←↩
="0" max="1" initial="0.95"/>

</frame >

Inside the <frame> we place another <checkbox> (using checked=˝true˝ , we signal that check
box should be checked by default), and a <spinbox>. The spinbox allows the user to select a
value between ˝min˝ and ˝max˝ with the default/initial value ˝0.95˝ . Setting the type to ˝re
al˝ signals that real numbers are accepted as opposed to type=˝integer˝ which would accept
integers only.
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NOTE
It is also possible, and often preferable, to make the <frame> itself checkable, instead of adding a
<checkbox> inside. See the reference for details. This is not done here, for illustrational purposes.

</tab>
</tabbook >

</dialog >

That is all for the second page of the <tabbook>, all pages in the <tabbook> and all elements in
the <dialog>. We are finished defining what the dialog looks like.

</document >

Finally we close the <document> tag, and that is it. The GUI is defined. You can save the file
now. But how does R syntax get generated from the GUI settings? We will deal with that in
the next chapter. First, however, we will look into adding a wizard interface, and some general
considerations.

4.2 Adding a wizard interface

Actually we do not have to define an additional <wizard> interface, but here is how that would
be done. To add a wizard interface, you will add a <wizard> tag at the same level as the <dialog>
tag:

<wizard label="Two Variable t-Test">
<page id="firstpage">

<text >As a first step , select the two variables you want to compare ←↩
against

each other. And specify , which one you theorize to be greater. ←↩
Select two-sided ,

if your theory does not tell you, which variable is greater.</ ←↩
text >

<copy id="main_settings_row"/>
</page >

Some of this is pretty self explanatory: We add a <wizard> tag with a label for the wizard.
Since a wizard can hold several pages that are shown one after another, we next define the first
<page>, and put an explanatory <text> note in there. Then we use a <copy> tag. What this does,
is really it saves us having to define yet again, what we already wrote for the <dialog>: The
copy tag looks for another tag with the same id earlier in the XML. This happens to be defined
in the <dialog> section, and is a <row> in which there are the <varselector>, <varslots> and the
‘hypothesis’ <radio> control. All of this is copied 1:1 and inserted right at the <copy> element.

Now to the second page:

<page id="secondpage">
<text >Below are some advanced options. It is generally safe not to ←↩

assume the
variables have equal variances. An appropriate correction will be ←↩

applied then.
Choosing "assume equal variances" may increase test -strength , ←↩

however.</text >
<copy id="varequal"/>
<text >Sometimes it is helpful to get an estimate of the confidence ←↩

interval of
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the difference in means. Below you can specify whether one should ←↩
be shown , and

which confidence -level should be applied (95% corresponds to a 5% ←↩
level of

significance).</text >
<copy id="frame_conf_int"/>

</page >
</wizard >

Much of the same thing here. We add some texts, and in between that <copy> further sections
from the dialog interface.

You may of course make the wizard interface look very different to the plain dialog, and not
use the <copy> tag at all. Be sure, however, to assign corresponding elements the same id in
both interfaces. This is not only used to transfer settings from the dialog interface to the wizard
interface and back, when the user switches interfaces (which does not yet happen in the current
version of RKWard), but also simplifies writing your code template (see below).

4.3 Some considerations on GUI design

This section contains some general considerations on which GUI elements to use where. If this
is your first attempt of creating a plugin, feel free to skip over this section, as it is not relevant to
getting a basic GUI working. Come back here, later, to see, whether you can refine your plugin’s
GUI in some way or another.

4.3.1 <radio> vs. <checkbox> vs. <dropdown>

The three elements <radio>, <checkbox>, <dropdown>, all serve a similar function: To select
one out of several options. Obviously, a check box only allows to choose between two options:
checked or not checked, so you cannot use it, if there are more than two options to choose from.
But when to use which of the elements? Some rules of thumb:
If you find yourself creating a <radio> or <dropdown> with only two options, ask yourself,
whether the question is essentially a yes / no type of question. E.g. a choice between ‘adjust
results’ and ‘do not adjust results’, or between ‘remove missing values’ and ‘keep missing values’.
In this case a <checkbox> is the best choice: It uses little space, will have the least words of
labels, and is easiest to read for the user. There are very few situations where you should choose
a <radio> over a <checkbox>, when there are only two options. An example of that might be:
‘Method of calculation: ’pearson’/’spearman’’. Here, more methods might be thinkable, and
they do not really form a pair of opposites.

Choosing between a <radio> and a <dropdown> is mostly a question of space. The <dropdown>
has the advantage of using little space, even if there are a lot of options to choose from. On the
other hand, a <radio> has the advantage of making all possible choices visible to the user at once,
without clicking on the dropdown arrow. Generally, if there are six or more options to choose
from, a <dropdown> is preferable. If there are five or less options, a <radio> is the better choice.
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Chapter 5

Generating R code from GUI settings

5.1 Using JavaScript in RKWard plugins

Now we have a GUI defined, but we still need to generate some R code from that. For that,
we need another text file, code.js, located in the same directory as the description.xml. You
may or may not be familiar with JavaScript (or, to be technically precise: ECMA-script). Doc-
umentation on JS can be found in abundance, both in printed form, and on the Internet (e.g.:
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide). But for most purposes you will
not need to know much about JS at all, as we will only use some very basic features.

TIP
After reading this chapter, have a look at the rkwarddev package as well. It provides some R functions
to create JavaScript code commonly used in RKWard. It can also autodetect variables used in a plugin
XML file and create basic JavaScript code from that for you to start with.

NOTE
Plugin .js files are assumed to be UTF-8 encoded. Be sure to check you editor’s encoding, if using
any non-ascii characters.

For the two variable t-test, the code.js file looks as follows (with comments in between):

5.1.1 preprocess()

function preprocess () {
}

The JS file is organized into three separate functions: preprocess(), calculate(), and printout
(). This is because not all code is needed at all stages. Currently the preprocess-function is not
really used in many places (typically you will omit it altogether).
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5.1.2 calculate()

function calculate () {
echo (’res <- t.test (x=’ + getString ("x") + ’, y=’ + getString ("y") + ←↩

’, hypothesis="’ + getString ("hypothesis") + ’"’ + getString (" ←↩
varequal"));

var conflevel = getString ("conflevel");
if (conflevel != "0.95") echo (’, conf.level=’ + conflevel);
echo (’)\n’);

}

This function generates the actual R syntax to be run from the GUI settings. Let’s look at this in
detail: The code to be used is generated using echo() statement. Looking at the echo() statement
step by step, the first part of it is

res <- t.test (

as plain text. Next we need to fill in the value, the user selected as the first variable. We fetch
this using getString (˝x˝), and append it to the string to be ‘echoed’. This prints out the value
of the GUI-element with id=˝x˝ : our first <checkbox>. Next, we append a ’, ’, and do the same
to fetch the value of the element ˝y˝ - the second <checkbox>. For the hypothesis (the <radio>
group), and the equal variances <checkbox>, the procedure is very similar.

Note that instead of concatenating the output snippets with ‘+’, you can also use several echo()
statements. Everything is printed on a single line. To produce a line break in the generated code,
insert a ˝\n˝ in the echoed string. In theory, you can even produce many lines with a single
echo-statement, but please keep it to one line (or less) of generated code per echo().

NOTE
Besides getString(), there are also functions getBoolean(), which will try to return the value as a
logical (suitable for using in an if()-statement), and getList(), which will try to return list-like data
in a JS Array(). We will show examples of those, later.
When looking at existing plugins, you will also find plenty of plugins using getValue(), instead of
getString(), and in fact the two are almost identical. However using getString(), getBoolean()
and getList() is the recommended practice since version 0.6.1.

It gets a little more tricky for the confidence level. For reasons of aesthetics, we do not want to
explicitly specify the confidence level to use, if it corresponds to the default value. Hence, instead
of printing the value unconditionally, we first fetch into a variable. Then we check, whether that
variable differs from ˝0.95˝ and if so print out an additional argument. Finally, we echo a closing
bracket and a line break: ˝)\n˝ . That is all for the calculate function.

5.1.3 printout()

function printout () {
echo (’rk.header (’ + i18n ("Two Variable t-Test") + ’)\n’);
echo (’rk.print (res)\n’);

}

And this was all there is to the printout function in most cases. rk.header() prints a standard
headline for the results. Note that in the .js files, you have to mark up all translatable strings by
hand, using i18n(), or some alternative commands. More on this in the chapter on international-
ization. You can also add some more information to this, if you like, e.g.:
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function printout () {
new Header (i18n ("Two Variable t-Test"))

.addFromUI ("varequal")

.add (i18n ("Confidence level"), getString ("conflevel")) // ←↩
Note: written like this for illustration purposes. More ←↩
automatic:

// .addFromUI ("conflevel")
.print ();

echo (’rk.print (res)\n’);
}

rk.print() utilizes the R2HTML package to provide HTML formatted output. Another helpful
function is rk.results(), which can also output different kinds of result tables. If in doubt,
however, just use rk.print(), and be done with. The JS class Header is a JS level helper to
generate a call to rk.header() (just take a look at the generated R code). In some cases you may
want to call echo (’rk.header (...)’) directly to print a header for your output.

Note that internally, the output is just a plain HTML document at this point of time. Therefore
you might be tempted to add custom HTML using rk.cat.output(). While this will work, please
do not do this. The output format may change (e.g. to ODF) in the future, so it is best not to
introduce HTML specific code. Rather keep things simple with rk.header(), rk.print(), rk.re
sults(), and -- if needed -- rk.print.literal(). If those do not seem to satisfy your formatting
needs, contact us on the mailing list for help.

Congratulations! You created your first plugin. Read on in the next chapters for more advanced
concepts.

5.2 Conventions, policies, and background

There are many ways to write R code for a certain task, and there are even more ways to gen-
erate this R code from JS. How exactly you do it, is left up to you. Still there are a number of
considerations that you should follow, and background information you should understand.

5.2.1 Understanding the local() environment

More often than not you will have to create one or more temporary R objects in the code gen-
erated by your plugin. Normally, you do not want those to be placed in the user’s workspace,
potentially even overwriting user variables. Hence, all plugin generated code is run in a local
() environment (see R help page on function local()). This means, all variables you create are
temporary and will not be saved permanently.

If the user explicitly asks for a variable to be saved, you will need to assign to that object using
.GlobalEnv$objectname <- value. In general, do not use the <<- operator. It will not necessarily
assign in .GlobalEnv.

One important pitfall is using eval(). Here, you need to note that eval will by default use the
current environment for evaluation, i.e. the local one. This will work well most of the times,
but not always. Thus, if you need to use eval(), you will probably want to specify the envir
parameter: eval(..., envir=globalenv()).

5.2.2 Code formatting

The most important thing is for your generated R code to work, but it should be also easy to read.
Therefore, please also keep an eye on formatting. Some considerations:
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Normal top-level R statements should be left aligned.

Statements in a lower block should be indented with one tab (see example below).

If you do very complex calculations, add a comment here and there, esp. to mark up logical
sections. Note that there is a dedicated function comment() for inserting translatable comments
in the generated code.

For example, generated code might look like this. The same code without indentation or com-
ments would be pretty hard to read, despite its modest complexity:

# first determine the wobble and rotation
my.wobble <- wobble (x, y)
my.rotation <- wobble.rotation (my.wobble , z)

# boggling method needs to be chosen according to rotation
if (my.rotation > wobble.rotation.limit (x)) {

method <- "foo"
result <- boggle.foo (my.wobble , my.rotation)

} else {
method <- "bar"
result <- boggle.bar (my.wobble , my.rotation)

}

5.2.3 Dealing with complex options

Many plugins can do more than one thing. For instance, the ‘Descriptive Statistics’ plugin can
compute mean, range, sum, product, median, length, etc. However, typically the user will only
choose to have some of those calculations performed. In this case, please try to keep the generated
code as simple as possible. It should only contain portions relevant to the options that are actually
selected. To achieve this, here is an example of a common design patterns as you would use it (in
JS; here, ˝domean˝, ˝domedian˝, and ˝dosd˝ would be <checkbox> elements):

function calculate () {
echo (’x <- <’ + getString ("x") + ’)\n’);
echo (’results <- list ()\n’);

if (getBoolean ("domean.state")) echo ("results$" + i18n ("Mean value") + ←↩
" <- mean (x)\n");

if (getBoolean ("domedian.state")) echo ("results$" + i18n ("Median") + " ←↩
<- median (x)\n");

if (getBoolean ("dosd.state")) echo ("results$" + i18n ("Standard ←↩
deviation") + " <- sd (x)\n");

//...
}

5.3 Tips and tricks

Here are a few assorted tricks which may make writing plugins less tedious:

If you need the value of a GUI setting at several places in you plugin’s code, consider assigning
it to a variable in JS, and using that instead of fetching it again and again with getString()/get
Boolean()/getList(). This is faster, more readable, and less typing all at the same time:

function calculate () {
var narm = ""; // na.rm=FALSE is the default in all functions below
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if (getBoolean ("remove_nas")) {
$narm = ", na.rm=TRUE";

}
// ...
echo ("results$foo <- foo (x" + narm + ")\n");
echo ("results$bar <- bar (x" + narm + ")\n");
echo ("results$foobar <- foobar (x" + narm "\n");
// ...

}

The simple helper function makeOption() can make it easier to omit parameters that are at their
default value, in many cases:

function calculate () {
var options
//...
// This will do nothing , if VALUE is 0.95 (the default). Otherwise it ←↩

will append ’, conf.int=VALUE ’ to options.
options += makeOption ("conf.int", getString ("confint"), "0.95");
//...

}
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Chapter 6

Writing a help page

When your plugin basically works, the time has come to provide a help page. While typically
you will not want to explain all the underlying concepts in depth, you may want to add some
more explanation for some of the options, and link to related plugins and R functions.

TIP
After reading this chapter, have a look at the rkwarddev package as well. It provides some R functions
to create most of RKWard’s XML tags for you. It is also capable of creating basic help file skeletons
from existing plugin XML files for you to start with.

You may recall putting this inside your plugin XML (if you have not put this in, do so now):

<document >
[...]
<help file="filename.rkh" />
[...]

</document >

Where, obviously, you would replace filename with a more appropriate name. Now it is time to
create this .rkh file. Here is a self-descriptive example:

<!DOCTYPE rkhelp >
<document >

<summary >
In this section , you will put some short , very basic information about what ←↩

the plugin does.
This section will always show up on the very top of the help page.

</summary >

<usage >
The usage section may contain a little more practical information. It does ←↩

not explain all
the settings in detail (that is done in the "settings" section), however.

To start a new paragraph , insert an empty line , as shown above.
This line , in contrast , will be in the same paragraph.

In all sections you can insert some simple HTML code , such as <b>bold </b> ←↩
or

<i>italic </i> text. Please keep formatting to the minimum needed , however.
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The usage section is always the second section shown in a help page.
</usage >

<section id="sectionid" title="Generic section" short_title="Generic">
If you need to, you can add additional sections between the usage and ←↩

settings sections.
However , usually , you will not need this while documenting plugins. The "id ←↩

"-attribute
provides an anchor point to jump to this section from the navigation menu. ←↩

The "short_title"
attribute provides a short title to use in the navigation bar. This is ←↩

optional , by default
the main "title" will be used both as a heading to the section , and as the ←↩

link name in the
navigation bar.

In any section you may want to insert links to further information. You do ←↩
this by adding

<link href="URL">link name </link >

Where URL could be an external link such as https://rkward.kde.org .
Several special URLs are supported in the help pages:

<link href="rkward://page/path/page_id"/>

This links to a top level rkward help page (not for a plugin).

<link href="rkward://component/[namespace/]component_id"/>

This links to the help page of another plugin. The [namespace/] part may be ←↩
omitted

(in this case , rkward is assumed as the standard namespace , e.g.:
<link href="rkward://component/import_spss"/> or
<link href="rkward://component/rkward/import_spss"/> are equivalent).
The component_id is the same that you specified in the .pluginmap.

<link href="rkward://rhelp/rfunction"/>

Links to the R help page on "rfunction".

Note that the link names will be generated automatically for these types of ←↩
links.

</section >

<settings >
<caption id="id_of_tab_or_frame"/>
<setting id="id_of_element">

Description of the GUI element identified by the given id
</setting >
<setting id="id_of_elementb" title="description">

Usually the title of the GUI element will be extracted from the
XML definition of the plugin , automatically. However ,
for some GUI elements , this description may not be enough to identify them , ←↩

reliably.
In this case , you can add an explicit title using the "title" attribute.

</setting >
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<setting id="id_of_elementc">
Description of the GUI element identified by "id_of_elementc"

</setting >
[...]

</settings >

<related >
The related section typically just contains some links , such as:

<ul>
<li><link href="rkward://rhelp/mean"/></li>
<li><link href="rkward://rhelp/median"/></li>
<li><link href="rkward://component/related_component"/></li>

</ul>
</related >

<technical >
The technical section (optional , always last) may contain some technical ←↩

details of the plugin
implementation , which are of interest only to RKWard developers. This is ←↩

particularly relevant
for plugins that are designed to be embedded in many other plugins , and ←↩

could detail , which
options are available to customize the embedded plugin , and which code ←↩

sections contain which
R code.

</technical >
</document >
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Chapter 7

Logic interactions between GUI
elements

7.1 GUI logic

All the basic concepts of creating a plugin for RKWard have been described in the previous chap-
ters. Those basic concepts should be sufficient for many -- if not most -- cases. However, some-
times you want more control over how your plugin’s GUI behaves.

For instance, suppose you want to extend the t-test example used in this documentation to allow
both: comparing a variable against another variable (as shown), and comparing a variable against
a constant value. Now, one way of doing this would be to add a radio-control that switches
between the two modes, and adding a spinbox to enter the constant value to compare against.
Consider this simplified example:

<!DOCTYPE rkplugin >
<document >

<code file="code.js"/>

<dialog label="T-Test">
<row>

<varselector id="vars"/>
<column >

<varslot id="x" types="number" source="vars" required="true" label ←↩
="compare"/>

<radio id="mode" label="Compare against">
<option value="variable" checked="true" label="another variable ( ←↩

select below)"/>
<option value="constant" label="a constant value (set below)"/>

</radio >
<varslot id="y" types="number" source="vars" required="true" label ←↩

="variable" i18n_context="Noun; a variable"/>
<spinbox id="constant" initial="0" label="constant" i18n_context=" ←↩

Noun; a constant"/>
</column >

</row>
</dialog >

</document >

So far so good, but there are a number of problems with this GUI. First, both the varslot and
the spinbox are always shown, whereas only one of the two is really used. Worse, the varslot
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always requires a valid selection, even if you compare against a constant. Obviously, if we create
a multi-purpose GUI like this, we want more flexibility. Enter: the <logic> section (inserted at
the same level as <code>, <dialog>, or <wizard>).

[...]
<code file="code.js"/>

<logic >
<convert id="varmode" mode="equals" sources="mode.string" standard=" ←↩

variable" />

<connect client="y.visible" governor="varmode" />
<connect client="constant.visible" governor="varmode.not" />

</logic >

<dialog label="T-Test">
[...]

The first line inside the logic section is a <convert> tag. Basically, this provides a new boolean
(on or off, true or false) property, which can be used later on. This property (˝varmode˝ ) is
true, whenever the upper radio button is selected and false whenever the lower radio button is
selected. How is this done?
First, under sources, the source properties to work on are listed (in this case only one each; you
could list several as sources=˝mode.string;somethingelse˝ , then ˝varmode˝ would only be
true, if both ˝mode.string˝ and ˝somethingelse˝ are equal to the string ˝variable˝ ). Note
that in this case we do not just write ˝mode˝ (as we would in getString(˝mode˝)), but ˝mode.s
tring˝ . This is actually the internal way a radio control works: It has a property ‘string’, which
holds its string value. getString(˝mode˝) is just a shorthand, and equivalent to getString(˝mod
e.string˝). See the reference for all properties of the different GUI elements.

Second, we set the mode of conversion to mode=˝equals˝ . This means, we want to check,
whether the source(s) is (are) equal to a certain value. Finally standard is the value to compare
against, so with standard=˝variable˝ , we check whether the property ˝mode.string˝ is equal
to the string ˝variable˝ (the value of the upper radio option). If it is equal, then the property
varmode is true, else it is false.

Now to the real stuff: We <connect> the ˝varmode˝ property to y.visible, which controls whether
the varslot ˝y˝ is shown or not. Note that any element which is made invisible is implicitly non-
required. Thus, if the upper radio-option is selected, the varslot ˝y˝ is required, and visible. Else
it is not required and hidden.

For the spinbox, we want the exact reverse. Fortunately, we do not need another <convert>
for this: Boolean properties can be negated very easily by appending the modifier ˝not˝ , so
we <connect> ˝varmode.not˝ to the spinbox’s visibility property. In effect, either the varslot
is shown and required, or the spinbox is shown and required - depending on which option is
selected in the radio control. The GUI is changing itself according to the radio option. Try the
example, if you like.

For a complete list of properties, refer to the reference. One more property, however, is special
in that all GUI elements have it: ‘enabled’. This is slightly less drastic than ‘visible’. It does not
show/hide the GUI element, but only enables/disables it. Disabled elements are typically shown
grayed out, and do not react to user input.

NOTE
Besides <convert> and <connect>, there are several further elements for use in the <logic> sec-
tion. E.g. conditional constructs can also be implemented using the <switch>-element. Refer to the
reference on logic elements for details.
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7.2 Scripted GUI logic

While connecting properties as described above is often enough, sometimes it is more flexible
or more convenient to use JS to script the GUI logic. In this way, the above example could be
re-written as:

[...]
<code file="code.js"/>

’
<logic >

<script ><![CDATA[
// ECMAScript code in this block
// the top-level statement is only called once
gui.addChangeCommand ("mode.string", "modeChanged ()");

// this function is called whenever the "mode" was changed
modeChanged = function () {

var varmode = (gui.getString ("mode.string") == "variable");
gui.setValue ("y.enabled", varmode);
gui.setValue ("constant.enabled", !varmode);

}
]]></script >

</logic >

<dialog label="T-Test">
[...]

The first line of code tells RKWard to call the function modeChanged() whenever the value of
the id=˝mode˝ radio box changes. Inside this function, we define a helper-variable ˝varmode˝
which is true when the mode is ˝variable˝ , false as it is ˝constant˝ . Then we use gui.setValu
e() to set the ‘enabled’ properties of ˝y˝ and ˝constant˝ , in just the same way as we did using
<connect> statements, before.

The scripted approach to GUI logic becomes particularly useful when you want to change the
available option according to the type of object that the user has selected. See the reference for
available functions.
Note that the scripted approach to GUI logic can be mixed with <connect> and <convert>-
statements if you like. Also note that the <script> tag allows to specify a script file name in
addition to or as an alternative to inlining the script code. Typically, inlining the script code as
shown above is most convenient, however.
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Chapter 8

Embedding Plugins into Plugins

8.1 Use cases for embedding

When writing plugins, you will often find that you are creating a number of plugins that only
differ in some respects, but have a lot more in common. For instance, for plotting, there are a
number of generic R options that can be used with mostly all types of plots. Should you create a
GUI and JS-template for those over and over again?

Obviously that would be quite a hassle. Fortunately, you do not have to do that. Rather you
create the common functionality once, and later you can embed it into several plugins. In fact it
is possible to embed any plugin into any other plugin, even if the original author of the embedded
plugin never thought, somebody would want to embed their plugin into another one.

8.2 Embedding inside a dialog

OK, enough said. How does it work? Simple: Just use the <embed> tag. Here is a stripped down
example:

<dialog >
<tabbook >

<tab [...]>
[...]

</tab>
<tab label="Plot Options" i18n_context="Options concerning the plot">

<embed id="plotoptions" component="rkward::plot_options"/>
</tab>
<tab [...]>

[...]
</tab>

</tabbook >
</dialog >

What happens here, is that the entire GUI or the plot options plugin (except of course for the
standard elements like Submit button, etc.) is embedded right into your plugin (try it!).

As you can see the syntax of the <embed>-tag is fairly simple. It takes an id as most elements.
The parameter component specifies which plugin to embed, as defined in the .pluginmap file (˝
rkward::plot_options˝ is the result of concatenating the namespace ‘rkward’, a separator ‘::’,
and the name of the component ‘plot_options’).
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8.3 Code generation when embedding

So far so good, but what about the generated code? How are the code for the embedding and
embedded plugin merged? In the embedding plugin’s JS code, simply write something like this:

function printout () {
// ...
echo ("myplotfunction ([...]" + getString ("plotoptions.code.printout"); ←↩

+ ")\n");
// ...

}

So essentially, we are fetching the code generated by the embedded plugin just like we are fetch-
ing any other GUI setting. Here the string ˝plotoptions.code.printout˝ can be deparsed to:
‘The printout section of the generated code of the element with the id plotoptions’ (plotoptions
is the ID we gave for the <embed> tag above). And yes, if you want advanced control, you can
even fetch the values of individual GUI elements inside the embedded plugin (but not the other
way around, as the embedded plugin does not know anything about its surroundings).

8.4 Embedding inside a wizard

If your plugin provides a wizard GUI, embedding works basically in the same way. You will
generally use:

<wizard [...]>
[...]
<page id="page12">

[...]
</page >
<embed id="plotoptions" component="rkward::plot_options"/>
<page id="page13">

[...]
</page >
[...]

</wizard >

If the embedded plugin provides a wizard interface, its pages will be inserted right between ˝pa
ge12˝ and ˝page13˝ of your plugin. If the embedded plugin provides a dialog interface only, a
single new page will be added between your pages ˝page12˝ and ˝page13˝ . The user will never
notice.

8.5 Less embedded embedding: Further Options button

While embedding is cool, you should be careful not to overdo it. Too many functions inside a
GUI just make it hard to find the relevant options. Of course, sometimes you may want to embed
a great deal of options (like all the options to plot()), but as those are really optional, you do not
want them prominently in your GUI.

An alternative is to embed those options ‘as a button’:

<dialog >
<tabbook >

[...]
<tab label="Options">
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[...]
<embed id="plotoptions" component="rkward::plot_options" as_button=" ←↩

true" label="Specify plotting options"/>
</tab>
[...]

</tabbook >
</dialog >

In this case, a single push button will be added to your plugin, labeled Specify plotting options.
When you press that button, a separate dialog will come up, with all the options of the embedded
plugin. Even while this embedded GUI is not visible most of the time, you can fetch its settings
just as described above.

CAUTION
Probably the ‘button’ approach should only ever be used for plugins that can never be invalid (for
missing/bad settings). Otherwise the user would not be able to submit the code, but might have a hard
time finding out, the reason for that is hidden behind some button.

8.6 Embedding/defining incomplete plugins

Some plugins -- and as a matter of fact, the plot_options used as an example above, is one of
them -- are not complete by themselves. They simply do not have the GUI elements to select
some important values. They are meant to be used only embedded into other plugins.

In how far is the plot_options plugin incomplete? Well, for some option settings, it needs to
know the name of the objects/expressions for the x and y axes (actually it will do fine if it only
has either, but it needs at least one to function properly). However, it does not have a mechanism
of selecting those objects, or entering them any other way. So how does it know about them?

In the logic section of the plot_options plugin there are two additional lines, not covered, yet:

<logic >
<external id="xvar" />
<external id="yvar" />

[...]
</logic >

This defines two additional properties in the plot_options plugin, whose sole purpose is to be
connected to some (yet unknown) properties of the embedding plugin. In the plot_options plugin
those two properties are simply used like any other, and for instance there are calls to getString
(˝xvar˝) in the plot_options JS template.

Now, for the incomplete plugin there is no way of knowing, where it will be embedded, and what
the relevant settings in the embedding plugin will be called. So we need to add two additional
lines in the embedding plugin’s logic section as well:

<logic >
[...]

<connect client="plotoptions.xvar" governor="xvarslot.available" />
<connect client="plotoptions.yvar" governor="yvarslot.available" />

</logic >

This is nothing new in principle, we have covered <connect> statements in the chapter of GUI
logic. You simply connect the values in two varlots (called ˝xvarslot˝ and ˝yvarslot˝ in this
example) to the receiving ‘external’ properties of the embedded plugin. That is it. Everything
else is taken care of automatically.
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Chapter 9

Dealing with many similar plugins

9.1 Overview on different approaches

Sometimes, you may wish to develop plugins for a series of similar functions. As an example,
consider the distribution plots. These generate fairly similar code, and of course it is desirable
to make the graphical interfaces look similar to each other. Finally large sections of the help files
can be identical. Only a few parameters are different for each plugin.

The naive approach to this is to develop one plugin, then basically copy and paste the entire con-
tents of the .js, .xml, and .rkh files, then changing the few portions that are different. However,
what if sometime later you find a spelling mistake that has been copied and pasted to all plugins?
What if you want to add support for a new feature? You would have to visit all plugins again,
and change each single one. A tiresome and tedious process.

A second approach would be to use embedding. However, in some cases this does not lend itself
well to the problem at hand, mostly because the ‘chunks’ you can embed are sometimes too large
to be useful, and it places some constraints on the layout. For these cases, the concepts including
.js files, including .xml files and snippets can be very useful (but see the thoughts on when it is
preferable to use embedding).

One word of caution, before you begin reading, though: These concepts can help making it sim-
pler to deal with many similar plugins, and can improve maintainability and readability of those
plugins. However, overdoing it can easily lead to the reverse effect. Use with some caution.

9.2 Using the JS include statement

You can easily include one script file into another in RKWard plugins. The value of this becomes
immediately obvious, if some sections of your JS code are similar across plugins. You can simply
define those sections in a separate .js file, and include this in all the plugin .js files. For example,
as in:

// this is a file called "common_functions.js"

function doCommonStuff () {
// perhaps fetch some options , etc.
// ...
comment ("This is R code you want in several different plugins\n");
// ...

}
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// this is one of your regular plugin .js files

// include the common functions
include ("common_functions.js");

function calculate () {
// do something
// ...

// insert the common code
doCommonStuff ();

}

Note that sometimes it is even more useful to reverse this, and define the ‘skeleton’ of preproces
s(), calculate(), and printout() functions is a common file, and make these call back for those
part which are different across plugins. E.g.:

// this is a file called "common_functions.js"

function calculate () {
// do some things which are the same in all plugins
// ...

// add in something that is different across plugins
getSpecifics ();

// ...
}

// this is one of your regular plugin .js files

// include the common functions
include ("common_functions.js");

// note: no calculate() function is defined in here.
// it in the common_functions.js, instead.

function getSpecifics () {
// print some R code

}

One issue you should be aware of when using this technique is variable scoping. See the JS
manual on variable scopes.

This technique is heavily used in the distribution plot and distribution CLT plot plugins, so you
may want to look there for examples.

9.3 Including .xml files

Basically the same feature of including files is also available for use in the .xml, .pluginmap and
.rkh files. At any place in these files you can place an <include> tag as shown below. The effect
is that the entire contents of that XML file (to be precise: everything within the <document> tag
of that file) is included verbatim at this point in the file. Note that you can only include another
XML file.

35



Introduction to Writing Plugins for RKWard

<document >
[...]
<include file="another_xml_file.xml"/>
[...]

</document >

The attribute file is the filename relative to the directory the current file is located in.

9.4 Using <snippets>

While including files as shown in the previous section is fairly powerful, it become most useful
when used in combination with <snippets>. Snippets are really smaller sections which you can
insert at another point in the file. An example illustrates this best:

<document >
<snippets >

<snippet id="note">
<frame >

<text >
This will be inserted at two places in the GUI

</text >
</frame >

</snippet >
</snippets >
<dialog label="test">

<column >
<insert snippet="note"/>
[...]
<insert snippet="note"/>

</column >
</dialog >

</document >

Hence, you define the snippet at one place at the top of the XML file, and then you <insert> it at
any place(s) you wish.

While this example is not too useful in itself, think about combining this with an <include>d .x
ml file. Note that you can also place snippets for the .rkh file in the same file. You would simply
<include> the file there as well, and <insert> the relevant snippet:

<!-- This is a file called "common_snippets.xml" -->
<document >

<snippet id="common_options">
<spinbox id="something" [...]/>
[...]

</snippet >
<snippet id="common_note">

<text >An important note for this type of plugin </text >
</snippet >

<snippet id="common_help">
<setting id="something">This does something </setting >
[...]

</snippet >
</document >
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<!-- This is the .xml file of the plugin -->
<document >

<snippets >
<!-- Import the common snippets -->
<include file="common_snippets.xml"/>

</snippets >

<dialog label="test2">
<insert snippet="common_note"/>
<spinbox id="something_plugin_specific" [...] />
<insert snippet="common_options"/>

</dialog >
</document >

Similar to inclusion in JS, the reverse approach is often even more useful:

<!-- This is a file called "common_layout.xml" -->
<document >

<column >
<insert snippet="note">
[...]
<insert snippet="plugin_parameters">

</column >
[...]

</document >

<!-- This is the .xml file of the plugin -->
<document >

<snippets >
<snippet id="note">

<text >The note used for this specific plugin </text >
</snippet >

<snippet id="plugin_parameters">
<frame label="Parameters specific to this plugin">

[...]
</frame >

</snippet >
</snippets >

<dialog label="test3">
<include file="common_layout.xml"/>

</dialog >
</document >

Finally, it is also possible to <insert> snippets into other snippets, provided that: a) there is only
one level of nesting, and b) the <snippets> section is placed at the top of the file (before a nested
snippet is inserted); this is because <insert> statements are resolved from top to bottom.

9.5 <include> and <snippets> vs. <embed>

At first glance, <include> and <snippets> provides functionality rather similar to embedding:
It allows to reuse some portions of code across plugins. So what is the difference between these
approaches, and when should you use which?

37



Introduction to Writing Plugins for RKWard

The key difference between these concepts is that embeddable plugins are a more tight bundle.
They combine a complete GUI, code to generate R code from this, and a help page. In contrast,
include and insert allow much more fine grained control, but at the price of less modularity.

That is, a plugin embedding another plugin will typically not need to know much about the
internal details of the embedded plugin. A prime example is the plot_options plugin. Plugins
wishing to embed this do not necessarily need to know about all the options provided, or how
they are provided. This is a good thing, as otherwise a change in the plot_options plugin might
make it necessary to adjust all plugins embedding this (a lot). In contrast, include and insert
really exposes all the internal details, and plugins using this will -- for example -- need to know
the exact ids and perhaps even the type of the elements used.

Hence the rule of thumb is this: include and insert are great if the relevant options are only
needed for a clearly limited group of plugins. Embedded plugins are better, if the group of plu-
gins it may be useful to is not clearly defined, and if the functionality can easily be modularized.
Another rule of thumb: If you can put the common portions into a single ‘chunk’, then do so,
and use embedding. If you need lots of small snippets to define the common portions -- well,
use <snippets>. A final way to look at it: If all plugins provide highly similar functionality, in-
cludes and inserts are probably a good idea. If they merely share one or two common ‘modules’,
embedding is likely better.
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Chapter 10

Concepts for use in specialized
plugins

This chapter contains information on some topics that are useful only to certain classes of plugins.

10.1 Plugins that produce a plot

Creating a plot from a plugin is easy to do. However, there are a few subtle gotchas to avoid,
and also some great generic functionality that you should be aware of. This section shows you
the basic concepts, and concludes with a canonical example that you should follow whenever
creating plot plugins.

10.1.1 Drawing a plot to the output window

In order to draw a plot to the output window, use rk.graph.on() directly before creating the
plot, and rk.graph.off(), directly afterwards. This is similar to e.g. calling postscript() and
dev.off() in a regular R session.

Importantly, however, you must always call rk.graph.off() after calling rk.graph.on(). Other-
wise the output file will be left in a broken state. To ensure rk.graph.off() really gets called,
you should wrap all R commands between the two calls in try() statement. Never heard of that?
Do not worry, it is easy. All you need to do is follow the pattern shown in example, below.

10.1.2 Adding preview functionality

NOTE
This section discusses adding preview functionality to plugins producing plots. There are separate
sections on previews of (HTML) output, previews of (imported) data, and custom previews. However,
it is recommended that you read this section first, as the approach is similar in each case.

A very useful feature for all plugins generating a plot/graph is to provide an automatically up-
dating preview. To do so, you will need two things: Adding a <preview> check box to your GUI
definition, and adjusting the generated code for the preview.
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Adding a <preview> check box is simple. Just place the following somewhere in your GUI. It will
take care of all the behind-the-scenes magic of creating a preview device, updating the preview
whenever the setting have changed, etc. Example:

NOTE
Starting with version 0.6.5 of RKWard <preview> preview elements are special-cased in plugin dialogs
(not wizards): They will be placed in the button-column, irrespective of where exactly they are defined in
the UI. It is still a good idea to define them at a sensible place in the layout, for backwards compatibility.

<document >
[...]
<dialog [...]>

[...]
<preview id="preview"/>
[...]

</dialog >
[...]

</document >

And that is it for the GUI definition.
Adjusting the JS template is only a little more work, here you will have to make sure, only the
plot itself is generated, and shown in an onscreen-device, rather than directed to the output. I.e.
no printing of headers, rk.graphics.on(), or similar calls. To assist you in this, RKWard will call
the preprocess(), calculate(), and printout() functions with an additional parameter that is
set to true, when generating code for a preview. (The parameter is omitted when generating the
final code. In javascript this will evaluate to false when used inside an if-statement.) See the
example, below for the typical pattern that you will use.

Alternatively, should you need more control than this, you can instead add a new function called
preview() to your JS template, and generate the code required for a preview, there (probably, at
least in part, again by calling calculate(), etc.).

10.1.3 Generic plot options

You will have noticed that most plotting plugins in RKWard provide a wide range of generic
options e.g. for customizing axis titles or figure margins. Adding these options to your plugin is
easy. They are provided by an embeddable plugin called rkward::plot_options. Embed this in
your plugin UI like this:

<document >
[...]
<logic [...]>

<connect client="plotoptions.xvar" governor="x.available"/>
<set id="plotoptions.allow_type" to="true"/>
<set id="plotoptions.allow_ylim" to="true"/>
<set id="plotoptions.allow_xlim" to="false"/>
<set id="plotoptions.allow_log" to="false"/>
<set id="plotoptions.allow_grid" to="true"/>

</logic >
<dialog [...]>

[...]
<embed id="plotoptions" component="rkward::plot_options" as_button=" ←↩

true" label="Plot Options"/>
[...]

</dialog >
[...]

</document >
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This will add a button to your UI to bring up a window with plot options. The logic section
is just an example. It allows you some control over the plot options plugin. Read more in the
plot_options plugin’s help page (linked from the help page of any plugin providing the generic
options).

Next you need to make sure that the code corresponding to your plot options is added to the
generated code for your plot. To do so, fetch the properties code.preprocess, code.printout, and
code.calculate from the embedded plot options plugin, and insert them into your code as shown
in the example, below.

10.1.4 A canonical example

Here is an example .JS file that you should use as a template, whenever you create a plotting
plugin:

function preprocess () {
// the "somepackage" is needed to create the plot
echo ("require (somepackage)\n");

}

function printout (is_preview) {
// If "is_preview" is set to false/undefined , it generates the full ←↩

code , including headers.
// If "is_preview" is set to true , only the essentials will be ←↩

generated.

if (!is_preview) {
echo (’rk.header (’ + i18n ("An example plot") + ’)\n\n’);
echo (’rk.graph.on ()\n’);

}
// only the following section will be generated for is_preview==true

// remember: everything between rk.graph.on() and rk.graph.off() should ←↩
be wrapped inside a try() statement:

echo (’try ({\n’);
// insert any option -setting code that should be run before the actual ←↩

plotting commands.
// The code itself is provided by the embedded plot options plugin. ←↩

printIndentedUnlessEmpty() takes care of pretty formatting.
printIndentedUnlessEmpty (’\t’, getString ("plotoptions.code.preprocess ←↩

"), ’’, ’\n’);

// create the actual plot. plotoptions.code.printout provides the part ←↩
of the generic plot options

// that have to be added to the plotting call , itself.
echo (’plot (5, 5’ + getString ("plotoptions.code.printout") + ’)\n’);

// insert any option -setting code that should be run after the actual ←↩
plot.

printIndentedUnlessEmpty (’\t’, getString ("plotoptions.code.calculate ←↩
"), ’\n’);

echo (’})’\n); // the closure of the try() statement

if (!is_preview) {
echo (’rk.graph.off ()\n’);

}
}
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10.2 Previews for data, output and other results

10.2.1 Previews of (HTML) output

NOTE
This section discusses adding preview functionality to plugins creating output / HTML printouts. It is
recommended that you read the separate section on plot previews, before this section.

Creating a preview of HTML output is almost the same procedure as creating a plot preview.
In this case, simply make sure that the preview() generates the relevant rk.print()/rk.results()
commands. It is generally a good idea to omit the header statements in the preview, however.
Here is a stripped-down example:

<!-- In the plugin ’s XML file -->>
<dialog label="Import CSV data" >

<browser id="file" type="file" label="File name"/>
<!-- [...] -->>
<preview id="preview" mode="output"/>

</dialog >>

Note the specification of mode=˝output˝ in the <preview> element.

// In the plugin ’s JS file
function preview () {

// generates the code used for preview
printout (true);

}

function printout (is_preview) {
// only generates a header if is_preview==false
if (!is_preview) {

new Header ("This is a caption").print ();
}
echo (’rk.print (result)’);

}

10.2.2 Previews of (imported) data

NOTE
This section discusses adding preview functionality to plugins creating (importing) data. It is recom-
mended that you read the separate section on plot previews, before this section.

Creating a preview of imported data (any type of data that rk.edit() can handle), is very similar
to creating a plot preview. The following stripped down example should help illustrate how to
create a data preview:

<!-- In the plugin ’s XML file -->>
<dialog label="Import CSV data" >

<browser id="file" type="file" label="File name"/>
<!-- [...] -->>
<preview id="preview" active="true" mode="data"/>

</dialog >>
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Note that the <preview> element specifies mode=˝data˝ this time. active=˝true˝ simply makes
the preview active by default.

// In the plugin ’s JS file
function preview () {

// generates the code used for preview
calculate (true);

}

function calculate (is_preview) {
echo (’imported <- read.csv (file="’ + getString ("file") /* [+ options ←↩

] */);
if (is_preview) {

echo (’preview_data <- imported\n’);
} else {

echo (’.GlobalEnv$ ’ + getString ("name") + ’ >- imported\n’);
}

}

function printout () {
// [...]

}

Again, the preview() function generates almost the same R code as the calculate() function, so we
create a helper function doCalcuate() to factor out the common parts. The most important thing
to note is that you will have to assign the imported data to a object called preview_data (inside
the current - local - environment). Everything else will happen automatically (roughly speaking,
RKWard will call rk.edit(preview_data), wrapped inside a call to .rk.with.window.hints()).

NOTE
While previews are a great feature, they do consume resources. In the case of data previews, there
may be cases, where previews can cause significant performance issues. This could be for importing
huge datasets (which are just too large to be opened for editing in RKWard’s editor window), but also
˝normal˝ datasets could be mis-imported, creating a huge number of rows or columns. It is very much
recommended that you limit the preview_data to a dimension that provides a useful preview, without
the danger of creating noticable performance issues (e.g. 50 rows by 50 columns should be more than
enough in most cases).

10.2.3 Custom previews

The <preview> element can be used to create previews for any type of ˝document˝ window that
can be attached to RKWard’s workplace. In addition to plots and data windows, this includes
HTML files, R scripts, and object summary windows. For the latter ones, you will have to use
<preview mode=˝custom˝>.

If you have read the sections describing plot preview and data previews, you should have a gen-
eral idea on the procedure, but ˝custom˝ previews require slightly more manual work behind the
scenes. The most important R function to look at is rk.assign.preview.data(), here. The following
short listing shows what your generated (preview) R code could look like for a plugin creating a
text file output:

## To be generated in the preview() code section of a plugin
pdata <- rk.get.preview.data("SOMEID")
if (is.null (pdata)) {

outfile <- rk.get.tempfile.name(prefix="preview", extension=".txt")
pdata <- list(filename=outfile , on.delete=function (id) {
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unlink(rk.get.preview.data(id)$filename)
})
rk.assign.preview.data("SOMEID", pdata)

}
try ({

cat ("This is a test", pdata$filename)
rk.edit.files(file=pdata$filename)

})

Here you should get the value SOMEID from the id property of the <preview>-element. I.e. using
getString (˝preview.id˝) in the plugin’s .js file.

10.3 Context-dependent plugins

So far we have assumed, all plugins are always meaningful, and all placed in the main menu.
However, some plugins are meaningful only (or additionally) in a certain context. For instance a
plugin to export the contents of an R X11 graphics device is obviously most useful, when placed
in the menu of an X11 device, not in the main menubar. Also, such a plugin should know about
the device number that it should operate on, without having to ask the user about this.

We call such plugins context-dependent. Correspondingly, in the .pluginmap file, they are not (or
not only) placed in the main <hierarchy> but rather into a <context> element. So far only two
different contexts are supported (more will come later): x11 and file import. We will deal with
those in turn. Even if you are only interested in the import context, please also read the section
on the x11 context, as this is slightly more elaborate.

10.3.1 X11 device context

To use a plugin in the context of an x11 device - that is place it in the menubar of the window you
get when you call x11() in the console, first declare it as usual in the .pluginmap file:

<document [...]>
<components >

[...]
<component id="my_x11_plugin" file="my_x11_plugin.xml" label="An X11 ←↩

context plugin"/>
[...]

</components >

However, you do not need to define it in the hierarchy (you can, if it is also meaningful as a
top-level plugin):

<hierarchy >
[...]

</hierarchy >

Instead, add a definition of the ˝x11˝ context, and add it to the menus there:

<context id="x11">
[...]
<menu id="edit">

[...]
<entry id="my_x11_plugin"/>

</menu >
</context >

</document >
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In the logic section of the plugin xml, you can now declare two <external> properties: devnu
m and context. context (if declared) will be set to ˝x11˝ when the plugin is invoked in this
context. devnum will be set to the number of the graphics device to operate on. And that is all.

10.3.2 Import data context

Before reading this section, please make sure to read the section on the X11 device context, as that
explains the basic concepts.

The ˝import˝ context is used to declare import file filter plugins. You simply place those in a
context with id=˝import˝ in the .pluginmap file. However, there is one additional twist when
declaring these plugins: In order to offer a unified file selection dialog for all supported file types,
you need to declare one additional bit of information on your component:

<document [...]>
<components >

[...]
<component id="my_xyz_import_plugin" file="my_xyz_import_plugin.xml" ←↩

label="Import XYZ files">
<attribute id="format" value="*.xyz *.zyx" label="XYZ data files"/>

</component >
[...]

</components >
<hierarchy >

[...]
</hierarchy >
<context id="import">

[...]
<menu id="import">

[...]
<entry id="my_xyz_import_plugin"/>

</menu >
</context >
[...]

</document >

The attribute line simply says, that the associate filename extensions for XYZ files are *.xyz or
*.zyx, and that the filter should be labeled ‘XYZ data files’ in the file selection dialog.

You can declare two <external> properties in your plugin. filename will be set to the selected
file name, and context will be set to ˝import˝ .

10.4 Querying R for information

In some cases, you may want to fetch further information from R, to be presented in your plugin’s
UI. For instance, you may want to offer a selection of the levels of a factor that the user has
selected for analysis. Since version 0.6.2 of RKWard it is possible to do so. Before we start, it is
important that you are aware of some caveats:

R Code run from inside the plugin’s UI logic is evaluated in R’s event loop, meaning they can be
run while other computations are running. This is to make sure your plugin’s UI will be usable,
even while R is busy doing other things. However, this makes it really important, that your code
does not have side effects. In particular:

• Do not make any assignments in .GlobalEnv or any other non-local environment.

• Do not print anything to the output file.
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• Do not plot anything on-screen.

• In general, do not do anything that has side-effects. Your code may read in information, not ˝do˝
anything.

With this in mind, here is the general pattern. You will use this inside a scripted UI logic section:

<script ><![CDATA[
last_command_id = -1;
gui.addChangeCommand ("variable", "update ()");
update = function () {

gui.setValue ("selector.enabled", 0);
variable = gui.getValue ("variable");
if (variable == "") return;

last_command_id = doRCommand (’levels (’ + variable + ’)’, " ←↩
commandFinished");

}

commandFinished = function (result , id) {
if (id != last_command_id) return; // another result is about to ←↩

arrive
if (typeof (result) == "undefined") {

gui.setListValue ("selector.available", Array ("ERROR"));
return;

}
gui.setValue ("selector.enabled", 1);
gui.setListValue ("selector.available", result);

}
]]></script >

Here, variable is a property holding an object name (e.g. inside a <varslot>). Whenever that
changes, you will want to update the display of levels inside the <valueselector>, named selec
tor. The key function here is doRCommand(), taking as first parameter the command string to
run, and as second parameter the name of a function to call, when the command has finished.
Note that the command is running asynchronously, and this makes things a bit more complex.
For one thing you want to make sure, that your <valueselector> remains disabled, while it does
not contain up-to-date information. Another thing is that you could potentially have queued
more than one command, before you get the first results. This is why every command is given
an ˝id˝, and we store that in last_command_id for later reference.

When the command is done, the specified callback is called (commandFinished, in this case) with
two parameters: The result itself, and the id of the corresponding command. The result will be
of a type resembling the representation in R, i.e. a numeric Array, if the result is numeric, etc. It
can even be an R list(), but in this case it will be represented as a JS Array() without names.

Note that even this example is somewhat simplified. In reality you should take additional pre-
cautions, e.g. to avoid putting an extreme amount of levels into the selector. The good news
is that probably you do not have to do all this yourself. The above example is taken from the
rkward::level_select plugin, for instance, which you can simply embed in your own plugin. This
even allows you to specify a different expression to run in place of levels().

10.5 Referencing the current object or current file

For many plugins it is desirable to work on the ‘current’ object. For instance a ‘sort’ plugin could
pre-select the data.frame that is currently being edited for sorting. The name of the current object
is available to plugins as a pre-defined property called current_object. You can connect to
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this property in the usual way. If no object is current, the property equates to an empty string.
Similarly, the URL of the current script file is accessible as a pre-defined property called current
_filename. That property is empty if no script file is currently being edited, or the script file has
not been saved, yet.

Currently the current_object can only be of class data.frame, but please do not rely on this,
since this will be extended to other types of data in the future. If you are interested in data.f
rame objects, only, connect to the current_dataframe property, instead. Alternatively, you can
enforce type requirements by using appropriate constraints on your <varslot>s, or by using GUI
logic scripting.

10.6 Repeating (a set of) options

Sometimes you want to repeat a set of options for an arbitrary number of items. E.g. suppose
you want to implement a plugin for sorting a data.frame. You may want to allow for sorting by
an arbitrary number of columns (in case of ties among the first column(s)). This could simply be
realized by allowing the user to select multiple variables in a <varslot> with multi=˝true˝ . But
if you want to extend this, e.g. allowing the user to specify for each variable whether it should
be converted to character / numeric, or whether sorting should be ascending or descending, you
need more flexibility. Other examples would be plotting multiple lines in one plot (allowing to
select object, line style, line color, etc. for each line), or specifying a mapping for recoding from a
set of old values to new values.
Enter the <optionset>. Let’s look at a simple example, first:

<dialog [...]>
[...]
<optionset id="set" min_rows="1">

<content >
<row>

<input id="firstname" label="Given name(s)" size="small">
<input id="lastname" label="Family name" size="small">
<radio id="gender" label="Gender">

<optioncolumn label="Male" value="m"/>
<optioncolumn label="Female" value="f"/>

</radio >
</row>

</content >

<optioncolumn id="firstnames" label="Given name(s)" connect="firstname. ←↩
text">

<optioncolumn id="lastnames" label="Family name" connect="lastname.text ←↩
">

<optioncolumn id="gender" connect="gender.string">
</optionset >
[...]

</dialog >

Here, we created a UI for specifying a number of persons (e.g. authors). The UI requires at least
one entry (min_rows=˝1˝ ). Inside the <optionset>-element, we begin by specifying the <con-
tent>, i.e. those elements that belong to the option set. You will be familiar with most elements
inside the <content>.
Next we specify the variables of interest that we will want to read from the option set in our
JS file. As we will be dealing with an arbitrary number of items, we cannot just read getStri
ng (˝firstname˝) in JS. Rather, for each value of interest, we specify an <optioncolumn>. For
the first optioncolumn in the example, <connect=˝firstname.text˝> means that the content of the
<input> element ˝firstname˝ is read for each item. <optioncolumn>s for which a label is given,
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will be shown in the display, in a column by that label. In JS, we can now fetch the first names for
all authors using getList(˝set.firstname˝), getList(˝set.lastnames˝) for the family names,
and getList(˝set.gender˝) for an array of ˝m˝/˝f˝ strings.

Note that there are no restrictions on what you can place inside an <optionset>. You can even use
embedded components. Just as with any other element, all you have to do is to collect the output
variables of interest in an <optioncolumn>-specification. In the case of embedded plugins, this
is often a section of the ˝code˝ property. E.g.:

<dialog [...]>
[...]
<optionset id="set" min_rows="1">

<content >
[...]
<embed id="color" component="rkward::color_chooser" label="Color"/>

</content >

[...]
<optioncolumn id="color_params" connect="color.code.printout">

</optionset >
[...]

</dialog >

Of course you can also use UI logic inside an optionset. There are two options for doing
this: You can do so by making connection (or scripting) in the main <logic> section of your
plugin, as usual. However, you will access the UI elements in the contents region as (e.g.)
˝set.contents.firstname.XYZ˝. Note the prefix ˝set˝ (the id you have assigned to the set and
˝contents˝). Alternatively, you can add a separate <logic> section as a child element of your <op-
tionset>. In this case, ids will be addressed relative to the contents region, e.g. ˝firstname.XYZ˝.
Only the <script>-element is not allowed in the logic section of an optionset. If you want to use
scripting, you will have to utilize the plugin’s main <logic> section.

NOTE
When scripting logic in an optionset, all you can do is access the current content region. Thus, typi-
cally, it is only meaningful to connect elements inside the contents region to each other. Connecting a
property outside the <optionset> to a property inside the content region, may be useful for initializa-
tion. However, modifying the contents region after initialization will not apply to items that the user has
already defined. Only to the currently selected item in the set.

10.6.1 ˝Driven˝ optionsets

So far we have considered an <optionset> that provides buttons for adding / removing items.
However, in some cases, it is much more natural to select items outside the <optionset>, and
only provide options for customizing some aspects of each item in an <optionset>. E.g. suppose
you want to allow the user to plot several objects inside one plot. For each object, the user should
be able to specify line color. You could solve this by placing a <varselector> and <varslot> inside
the <content> area, allowing the user to select one item at a time. However, it will mean much
less clicks for the user, if you use a <varslot multi=˝true˝> outside the <optionset>, instead. Then
you will connect this selection of objects to a so-called ˝driven˝ optionset. Here is how:

<dialog [...]>
<logic >

<connect client="set.vars" governor="vars.available"/>
<connect client="set.varnames" governor="vars.available.shortname"/>

</logic >
[...]
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<varselector id="varsel"/>
<varslot id="vars" label="Objects to plot"/>
<optionset id="set" keycolumn="var">

<content >
[...]
<embed id="color" component="rkward::color_chooser" label="Line color ←↩

"/>
</content >

[...]
<optioncolumn id="vars" external="true">
<optioncolumn id="varnames" external="true" label="Variable">
<optioncolumn id="color_params" connect="color.code.printout">

</optionset >
[...]

</dialog >

We will start looking at the example at the bottom. You will note that two <optioncolumn>
specifications have external=˝true˝ . This tells RKWard that these are controlled from outside
the <optionset>. Here, the sole purpose of the ˝varnames˝-optioncolumn is to provide easy-to-
read labels in the optionset display (it is connected to the ˝shortname˝ modifier of the property
holding the selected objects). The purpose of the ˝vars˝-optioncolumn is to serve as the ˝key˝
column, as specified by <optionset keycolumn=˝vars˝...>. This means that for each entry in this
list, the set will offer one set of options, and options are logically tied to these entries. This column
is connected to the property holding the selected objects in the <varslot>. That is for each object
that is selected there, the <optionset> will allow to specify line color.

NOTE
External column can also be connected to properties inside the <content> region. However, it is
important to note that optioncolumns declared external=˝true˝ should never be modified from
inside the <optionset>, and optioncolumns declared external=˝false˝ (the default) should never
be modified from outside the <optionset>.

10.6.2 Alternatives: When not to use optionsets

Optionsets are a powerful tool, but they can sometimes do more harm than good, as they add
considerable complexity, both from the perspective of a plugin developer, and from the perspec-
tive of a user. Thus, think twice, when using them. Here is some advice:

• For some simple cases, the <matrix> element may provide a useful lightweight alternative.

• Do not make your plugin do too much. We gave the example of using an optionset for a plugin
to draw several lines within one plot. But in general it is not a good idea to create a plugin that
will produce individual plots for each item in an optionset. Rather make the plugin produce
one plot, and the user can call it multiple times.

• If you do not expect more than two or three items in a set, consider repeating the options,
manually, instead.
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Chapter 11

Handling dependencies and
compatibility issues

11.1 RKWard version compatibility

We do our best to make sure that plugins developed for an old version of RKWard will remain
functional in later versions of RKWard. However, the reverse is not always true as new features
are been added. Since not all users are running the latest version of RKWard, this means your
plugin may not work for everybody.

When you are aware of such compatibility issues, you should make sure to document this fact
in your .pluginmap file, using the <dependencies> element. The <dependencies> can either
be specified as a direct child of the .pluginmap’s <document> element, or as a child element of
individual <component> definitions. In the first case, the dependencies apply to all plugins in
the map. In the latter case only to the individual <component>(s). You can also mix top ˝global˝
and ˝specific˝ dependencies. In this case the ˝global˝ dependencies are added to those of the
individual component.

Let’s look at a small example:

<document ...>
<dependencies rkward_min_version ="0.5.0c" />
<components ...>

<component id="myplugin" file="reduced_version_of_myplugin.xml" ...>
<dependencies rkward_max_version ="0.6.0z" />

</component >
<component id="myplugin" file="fancy_version_of_myplugin.xml" ...>

<dependencies rkward_min_version ="0.6.1" />
</component >
...

x </components ...>
</document >

In this example, all plugins are known to require at least version 0.5.0c of RKWard. One plugin,
with id=˝myplugin˝ is provided in two alternative variants. The first, stripped down, version
will be used for RKWard versions before 0.6.1. The latter utilizes features that are new in RKWard
0.6.1, and will only be used from RKWard 0.6.1 onwards.

Providing alternative variants like this is a very user friendly way to make use of new features,
while still keeping support for earlier versions of RKWard. Alternative versions should share
the same id (warnings will be produced, otherwise), and may only be defined within the same
.pluginmap file.
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Plugin which are not compatible with the running version of RKWard, and which do not come
with an alternative version will be ignored with a warning.

NOTE
Actually RKWard 0.6.1 is the first version to interpret dependencies - and to report dependency er-
rors - at all. Thus, contrary to what the example may suggest, specifying any earlier versions in the
dependencies will not have any direct effect (but may still be a good idea for documentation purposes).

Sometimes it will even be possible to handle version incompatibility issues inside a single .plugin
map file, using the <dependency_check> element, described in the following section.

11.2 R version compatibility

Similar to rkward_min_version and rkward_max_version, the <dependencies> element allows
specification of the attributes R_min_version and R_max_version. However, there are the fol-
lowing differences:

• Plugins which fail to meet the R version requirement are not currently skipped when reading
a .pluginmap file. The user can still call the plugin, and will not see any immediate warning
(in future versions, a warning message will probably be shown)

• In consequence it is also not possible to define alternative versions of a plugin depending on
the running version of R.

• However, it is often easy to achieve backwards compatibility as shown below. If you are aware
of R compatibility issues, please consider using this method, instead of defining a dependency
on a particular version of R.

In many cases, it is easily possible to provide reduced functionality, if a certain feature is not
available in the running version of R. Consider the following short example of a plugin .xml file:

<dialog [...]>
<logic >

<dependency_check id="ris210" R_min_version ="2.10.0"/>
<connect client="compression.xz.enabled" governor="ris210"/>

</logic >
[...]
<radio id="compression" label="Compression method">

<option label="None" value="">
<option label="gzip" value="gzip">
<option id="xz" label="xz" value="xz">

</radio >
[...]

</dialog >

In this example the compression option ˝xz˝ will simply be disabled when the R runtime version
is older than 2.10.0 (which did not support xz compression). The <dependency_check> element
supports the same attributes as the <dependencies> element in .pluginmap files. It creates a
boolean property, which is true, if the specified dependencies are met, false otherwise.

11.3 Dependencies on R packages

Dependencies on specific R packages can be defined, but as of RKWard 0.6.1, these dependencies
are neither checked, nor installed / loaded, automatically. They are shown in the plugin help
files, however. Here is an example definition:
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<dependencies >
<package

name="heisenberg"
min_version ="0.11-2"
repository="http://rforge.r-project.org"

/>
</dependencies >

NOTE
Always make sure to add appropriate require() calls, if you plugin needs certain packages to be
loaded.

NOTE
If you distribute your .pluginmap as an R package, and all plugins depend on a particular package,
then you should define that dependency on the R package level. Defining dependencies to R pack-
ages on the level of the RKWard .pluginmap is most useful, if only some of your plugins need the
dependency, the dependency is not available from CRAN, or your .pluginmap is not distributed as an
R package.

11.4 Dependencies on other RKWard.pluginmaps

If your plugins depend on plugins defined in another .pluginmap (that is not part of your pack-
age) you can define this dependency like this:

<dependencies >
<pluginmap

name="heisenberg_plugins"
url="http://eternalwondermaths.example.org/hsb"

/>
</dependencies >

Currently will neither load, nor install, nor even warn about missing .pluginmaps, but at least
information on dependencies (and where to obtain them) will be shown on the plugin’s help
page. You do not have to (and you should not) declare dependencies on .pluginmaps that are
shipped with the official RKWard distribution, or on .pluginmaps that are inside your own pack-
age. Further, if a required .pluginmap is distributed as an R package, declare a dependency of
the package (as shown in the previous section), rather than on the map.

To make sure that required .pluginmaps are actually loaded, use the <require>-tag (refer to the
reference for details).

11.5 An example

To clarify how dependency definitions can be mixed, here is a combined example:

<document ...>
<dependencies rkward_min_version ="0.5.0c">

<package
name="heisenberg"
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min_version ="0.11-2"
repository="http://rforge.r-project.org"

/>
<package

name="DreamsOfPi"
min_version ="0.2"

/>
<pluginmap

name="heisenberg_plugins"
url="http://eternalwondermaths.example.org/hsb"

/>
<dependencies >

<require map="heisenberg::heisenberg_plugins"/>

<components ...>
<component id="myplugin" file="reduced_version_of_myplugin.xml" ...>

<dependencies rkward_max_version ="0.6.0z" />
</component >
<component id="myplugin" file="fancy_version_of_myplugin.xml" ...>

<dependencies rkward_min_version ="0.6.1" />
</component >
...

x </components ...>
</document >
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Chapter 12

Plugin translations

So far we have used a few concepts regarding translations or ˝i18n˝ (short for
˝internationalization˝, which has 18 characters between i and n) in passing. In this chapter we
give a more in-depth account of what i18n functionally for RKWard plugins. For the most part
you will not need all of this in your plugins. However, it may be a good idea to read over this
chapter in full, as understanding these concepts should help you creating plugins that are fully
translatable, and that allow for a high quality of translations.

12.1 General considerations

One important point to understand about software translations, in contrast to translations of
other text materials, is that translators will often have a rather hard time getting a complete
picture of what they are translating. Software translations are necessarily based on rather short
fragments of text: Every label you give to an <option> in a <radio>, every string that you mark
for translation in an i18n()-function call, will form a separate ˝translation unit˝. In essence, each
such fragment will be presented to the translator in isolation. Well, not complete isolation, as we
do try to provide translator with as much meaningful context as can be extracted, automatically.
But at some points translators will need additional context to make sense of a string, especially
where strings are short.

12.2 i18n in RKWard’s xml files

For RKWard’s XML files, i18n will mostly just work. If you are writing your own .pluginmap (e.g.
for an external plugin), you will have to specify a po_id next to the pluginmap’s id. This defines
the ˝message catalog˝ to use. In general this should be set identical to the id of your .pluginmap,
but if you provide several related .pluginmaps in a single package, you will probably want to
specify a common po_id in your maps. The po_id of a .pluginmap file is inherited by all plugins
declared in it, unless that declares a different po_id.

For plugins and help pages, you do not need to tell RKWard which strings are to be translated,
because that is generally evident from their usage. However, as explained above, you should
keep an eye out for strings that may be ambiguous or need some explaining in order to be trans-
lated, correctly. For strings that could have different meanings, provide an i18n_context like
this:

<checkbox id="scale" label="Scale" i18n_context="Show the scale"/>
<checkbox id="scale" label="Scale" i18n_context="Scale the plot"/>
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Providing i18n_context will cause the two strings to be translated separately. Otherwise they
would share a single translation. In addition, the context is shown to the translator. The i18n
_context-attribute is supported on all elements that can have translatable strings, somewhere,
including elements that contain text inside them (e.g. <text>-elements).

In other cases the string to translate has a single non-ambiguous meaning, but may still need
some explaining. In this case you can add a comment that will be shown to translators. Examples
might include:

<!-- i18n: No, this is not a typo for screen plot! -->
<component id="scree_plot" label="Scree plot"/>

<!-- i18n: If you can, please make this string short. Having more than some ←↩
15 chars

looks really ugly at this point , and the meaning should be mostly self - ←↩
evident to the

user (selection from a list of values shown next to this element) -->
<valueslot id="selected" label="Pick one"/>

Note that such comments must precede the element they apply to, and must start with either
˝i18n:˝ or ˝TRANSLATORS:˝.
Finally, in rare cases, you may want to exclude certain strings from translation. This may make
sense, for example, if you offer a choice between several R function names in a <radio>-control.
You do not want these to be translated, then (but depending on the context, you should consider
giving a descriptive label, instead):

<radio id="transformation" label="R function to apply">
<option id="as.list" noi18n_label="as.list()"/>
<option id="as.vector" noi18n_label="as.vector()"/>
[...]

</radio >

Note that you will omit the label-attribute, then, and specify noi18n_label, instead. Also, note
that in contrast to i18n_context and comments, using noi18n_label will make your plugin
incompatible with versions of RKWard prior to 0.6.3.

12.3 i18n in RKWard’s js files and sections

In contrast to the .xml files, making the .js files of a plugin translatable requires more custom
work. The key difference, here, is that there is no decent automatic way to tell, whether a string
is meant to be displayed as a human readable string, or a piece of code. So you need to mark
this up, yourself. We have already shown examples of this, all along. Here is a more complete
description of the i18n-functions available in js code, and some hints for more complex cases:

i18n (msgid, [...])

The most important function. Marks the string for translation. The string (whether trans-
lated or not) is returned quoted using double quotes (’˝’). An arbitrary number of place-
holders can be used in the string like shown below. Using such placeholders instead of
concatenating small substrings is much easier for translators:

i18n ("Compare objects %1 and %2", getString (’x’), getString (’y ←↩
’));

i18nc (msgctxt, msgid, [...])

Same as i18n(), but additionally providing a message context:
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i18nc ("proper name , not state of mind", "Mood test");

i18np (msgid_singular, msgid_plural, n, [...])

Same as i18n(), but for messages that may be different in singular or plural form (and some
languages have differentiate yet more numerical forms). Note that just like with i18n(), you
can use an arbitrary number of replacements, but the first (’%1’) is required, and has to be
an integer.

i18np ("Comparing a single pair", "Comparing %1 distinct pairs", ←↩
n_pairs);

i18ncp (msgctxt, msgid_singular, msgid_plural, n, [...])

i18np() with added message context.

comment (comment, [indentation])
Echos a code comment, marked for translation. In contrast to the other i18n() functions,
this is not quoted, but a ’#’ is added to each line of the comment.

comment ("Transpose the matrix");
echo (’x <- t (x)\n’);

To add comments to the translators (see above for a discussion of the differences between com-
ment and context), add a comment starting with ˝i18n:˝ or ˝translators:˝ directly above the
i18n()-call to comment. E.g.:

// i18n: Spelling is correct: Scree plot.
echo (’rk.header (’ + i18n ("Scree plot") + ’)\n’);

12.3.1 i18n and quotes

For the most part, you will not have to worry about i18n() behavior with respect to quotes. As,
typically, translatable strings are string literals, quoting them is just the right thing to do, and
saves you some typing. Also, in functions like makeHeaderCode()/Header() that usually quote
their arguments, i18n()’ed strings are protected from duplicate quoting. Essentially, this works,
by sending the translated string first through quote() (to make it quoted), then through noquote()
(to protect it from additional quoting). Should you require a translatable string that is not quoted,
use i18n(noquote (˝My message˝)). Should you require a translatable string to be quoted, a
second time, send it through quote(), twice.

That said, it is generally not a good idea to make bits like function names or variable names
translatable. For one thing, R, the programming language, is inherently in English, and there
is no internationalization of the language itself. Code comments are a different beast, but you
should use the comment()-function for those. Secondly, making syntactically relevant parts of
the generated code translatable means that translations could actually break your plugin. E.g.
if an unsuspecting translator translates a string meant as a variable name in two distinct words
with a space in between.

12.4 Translation maintainance

Now that you have made your plugin translatable, how do you actually get it translated? In
general you only need to worry about this, when developing an external plugin. For plugins in
RKWard’s main repository, all the magic is done for you. Here is the basic workflow for a external
plugins. Note that you need the ˝gettext˝ tools, installed:
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• Mark up all strings, providing context and comments as needed

• Run python3 scripts/update_plugin_messages.py --extract-only /path/to/my.pluginmap.
scripts/update_plugin_messages.py is not currently part of the source releases, but can be
found in a source repository checkout.

• Distribute the resulting rkward__POID.pot file to your translators. For external plugins, it is
recommended to place it in a subfolder ˝po˝ in inst/rkward.

• Translator opens the file in a translation tool such as lokalize. Actually, even if you are not
going to prepare any translation, yourself, you should try this step for yourself. Browse the
extracted strings looking out for problems / ambiguities.

• Translator saves the translation as rkward__POID.xx.po (where xx is the language code), and
sends it back to you.

• Copy rkward__POID.xx.po to your sources, next to rkward__POID.pot. Run python3 script-
s/update_plugin_messages.py /path/to/my.pluginmap (Note: without --extract-only, this
time). This will merge the translation with any interim string changes, compile the translation,
and install it into DIR_OF_PLUGINMAP/po/xx/LC_MESSAGES/rkward__POID.mo (where xx is
the language code, again).

• You should also include the non-compiled translation (i.e. rkward__POID.xx.po) in your dis-
tribution, in the ˝po˝ subdirectory.

• For any update of your plugin, run python3 scripts/update_plugin_messages.py /path/-
to/my.pluginmap to update the .pot file, but also the existing .po-files, and the compiled mes-
sage catalogs.

12.5 Writing plugin translations

We assume you know your trade as a translator, or are willing to read up on it, elsewhere. A few
words specifically about translations of RKWard plugins, though:

• RKWard plugins were not translatable until version 0.6.3, and were mostly not written with
i18n in mind, before then. Thus you are going to encounter rather more ambiguous strings,
and other i18n problems than in other mature projects. Please do not just silently work around
these, but let us (or the plugin maintainers) know, so we can fix these issues.

• Many RKWard plugins refer to highly specialized terms, from data handling and statistics, but
also from other fields of science. In many cases, a good translation will require at least basic
knowledge of these fields. In some cases, there is no good translation for a technical term,
and the best option may be to leave the term untranslated, or to include the English term in
parentheses. Do not focus too much on the 100% mark of translated strings, focus on providing
a good translation, even if that means skipping some strings (or even skipping some message
catalogs as a whole). Other users may be able to fill in any gaps in technical terms.
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Chapter 13

Author, license and version
information

So you have written a set of plugins, and you are getting ready to share your work. To make
sure users will know what your work is all about, under what terms they can use and distribute
it, and whom they should contact about issues or ideas, you should add some information about
your plugins. This can be done using the <about> element. It can be used in either the .pluginm
ap or in individual plugin .xml files (in both cases as a direct child of the document tag). When
specified in the .pluginmap it will apply to all plugins. If <about> is specified in both places, the
<about> information in the plugin .xml file will override that in the .pluginmap file. You can also
add an <about> element to .rkh-pages, which are not connected to a plugin, if there is a need for
that.
Here is an example .pluginmap file with only a few explanations, below. In cases of doubt, more
information may be available from the reference.

<document
namespace="rkward"
id="SquaretheCircle_rkward"

>
<about

name="Square the Circle"
shortinfo="Squares the circle using Heisenberg compensation."
version="0.1-3"
releasedate ="2011-09-19"
url="http://eternalwondermaths.example.org/23/stc.html"
license="GPL"
category="Geometry"

>
<author

given="E.A."
family="Dölle"
email="doelle@eternalwondermaths.example.org"
role="aut"

/>
<author

given="A."
family="Assistant"
email="alterego@eternalwondermaths.example.org"
role="cre, ctb"

/>
</about >
<dependencies >
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...
</dependencies >
<components >

...
</components >
<hierarchy >

...
</hierarchy >

</document >

Most of this should explain itself, so we’ll not discuss each and every tag element. But let’s look
at some details that probably need some commentary for easier understanding.

The category element in <about> can be defined rather freely, but should be meaningful, as
it’s thought to be used to order plugins into groups. All other attributes in this opening tag are
mandatory and must be filled with reasonable content.

At least one <author> with a valid email address and the role ‘aut’ (‘author’) must also be given.
In case your plugin causes problems or someone would like to share its gratitude with you, it
should be easy to contact someone who’s involved. For further information on other valid roles,
like ‘ctb’ for code contributors or ‘cre’ for package maintenance, please refer to the R documenta-
tion on person().

NOTE
Remember that you can use <include> and / or <insert> to repeat information across several .xml
files (e.g. information on an author who was involved with several plugins). More information.

TIP
You do not have to write this XML code by hand. If you use the function rk.plugin.skeleton() from
the rkwarddev package and provide all necessary information via the about option, it will automatically
create a .pluginmap file with a working <about> section for you.
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Chapter 14

Share your work with others

14.1 External plugins

As of version 0.5.5, RKWard provides a comfortable way to install additional third party plugins
which do not belong to the core package itself. We call these ‘external plugins’. They come in
form of an R package and can be managed directly via the usual package management features
of R and/or RKWard.
This section of the documentation describes how external plugins are to be packaged, so that
RKWard can use them. The plugin creation itself is of course identical to the previous sections.
That is, you should probably first write a working plugin, and then check back here to learn how
to distribute it.
Since external plugins are a relatively young feature, details of this might probably change in
future releases. You’re welcome to contribute your ideas to improve the process.

TIP
These docs explain the details of external plugins so you can learn how they work. In addition to
that, also have a look at the rkwarddev package, which was designed to automate a lot of the writing
process.

14.2 Why external plugins?

The number of packages to extend the functionality of R is immense already, and climbing. On
one hand, we want to encourage you to write plugins for even the most specialised tasks you
need solved. On the other hand, the average user should not get lost in huge menu trees full
of unknown statistical terms. Therefore it seemed reasonable to keep the plugin handling in
RKWard quite modular as well. The RKWard team maintains its own public package repository
at https://files.kde.org/rkward/R/ , designated to host your external plugins.
As a rule of thumb, plugins that seem to serve a widely used purpose (e.g. t-Tests) should become
part of the core package, while those who serve a rather limited group of people with special
interests should be provided as an optional package. For you as a plugin author it’s best practice
to just start with an external plugin.

14.3 Structure of a plugin package

For external plugins to install and work properly, they must follow some structural guidelines
regarding their file hierarchy.
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14.3.1 File hierarchy

Let’s have a look at the prototypic file hierarchy of an elaborate plugin archive. You don’t have to
include all of these directories and/or files for a plugin to work (read on to learn what’s absolutely
necessary), consider this a ‘best practice’ example:

plugin_name/
inst/

rkward/
plugins/

plugin_name.xml
plugin_name.js
plugin_name.rkh
...

po/
ll/

LC_MESSAGES/
rkward__plugin_name_rkward.mo

rkward__plugin_name_rkward.ll.po
rkward__plugin_name_rkward.pot

tests/
testsuite_name/

RKTestStandards.sometest_name.rkcommands.R
RKTestStandards.sometest_name.rkout
...

testsuite.R
plugin_name.pluginmap
...

ChangeLog
README
AUTHORS
LICENSE
DESCRIPTION

NOTE
In this example, all occasions of plugin_name, testsuite_name and sometest_name are to be replaced
with their correct names, accordingly. Also, ll is a placeholder for a language abbreviation (e.g., ‘de’,
‘en’ or ‘es’).

TIP
You do not have to create this file hierarchy by hand. If you use the function rk.plugin.skeleton()
from the rkwarddev package, it will automatically create all necessary files and directories for you,
except the po directory which is created and managed by the translation script.

14.3.1.1 Basic plugin components

It is mandatory to include at least three files: a .pluginmap, a plugin .xml description and a plugin
.js file. That is, even the ˝plugins˝ directory is optional. It might just help to give your files some
order, especially if you include more that one plugin/dialog in the archive, which is of course no
problem. You can have as many directories for the actual plugin files as you see fit, they just have
to resemble the .pluginmap, respectively. It is also possible to even include several .pluginmap
files, if it fits your needs, but you should include them all in ‘plugin_name.pluginmap’ then.

61



Introduction to Writing Plugins for RKWard

Each R package must have a valid DESCRIPTION file, which is also crucial for RKWard recognizing
it as a plugin provider. Most of the information it carries is also needed in the plugin Meta-
information and possibly dependencies, but in a different format (the R documentation explains
the DESCRIPTION file in detail).

In addition to the general contents of a DESCRIPTION file, make sure to also include the line ‘En-
hances: rkward’. This will cause RKWard to automatically scan the package for plugins if it is
installed. An example DESCRIPTION file looks like this:

Package: SquaretheCircle
Type: Package
Title: Square the circle
Version: 0.1-3
Date: 2011-09-19
Author: E.A. Dölle <doelle@eternalwondermaths.example.org>
Maintainer: A. Assistant <alterego@eternalwondermaths.example.org>
Enhances: rkward
Description: Squares the circle using Heisenberg compensation.
License: GPL
LazyLoad: yes
URL: http://eternalwondermaths.example.org/23/stc.html
Authors@R: c(person(given="E.A.", family="Dölle", role="aut",

email="doelle@eternalwondermaths.example.org"),
person(given="A.", family="Assistant", role=c("cre",
"ctb"), email="alterego@eternalwondermaths.example.org"))

TIP
You do not have to write this file by hand. If you use the function rk.plugin.skeleton() from the
rkwarddev package and provide all necessary information via the ‘about’ option, it will automatically
create a working DESCRIPTION file for you.

14.3.1.2 Additional information (optional)

ChangeLog, README, AUTHORS, LICENSE should be self-explaining and are entirely optional. Actu-
ally, they won’t be interpreted by RKWard, so they are rather meant to carry additional informa-
tion that might be relevant e.g. for distributors. Most of their relevant content (author credits,
licence terms etc.) will be included in the actual plugin files anyway, though (see the section on
meta-information). Note that all of these files could also be placed somewhere in the ˝inst˝ di-
rectory, if you want them not only to be present in the source archive but the installed package as
well.

14.3.1.3 Automated plugin testing (optional)

Another optional directory is ˝tests˝, which is meant to provide files needed for automated plu-
gin testing. These tests are helpful to quickly check if your plugins still work with new versions
of R or RKWard. If you want to include tests, you should really restrain yourself to the naming
scheme and hierarchy shown here. That is, tests should reside in a directory called tests, which
includes a file testsuite.R and a folder with tests standards named after the appropriate test
suite. You can, however, provide more than one test suite; in that case, if you don’t want to ap-
pend them all in the one testsuite.R file, you can split them in e.g. one file for each test suite
and create one testsuite.R with source() calls for each suite file. In either case, create separate
subdirectories with test standards for each defined suite.
The benefits of upholding to this structure is that plugin tests can be run simply by calling rktes
ts.makplugintests() from the rkwardtests package without additional arguments. Have a look
at the online documentation on Automated Plugin Testing for further details.
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14.4 Building the plugin package

As explained earlier, external RKWard plugins are in effect R packages, and therefore the pack-
aging process is identical. In contrast to ˝real˝ R packages, a pure plugin package does not carry
any further R code (although you can of course add RKWard plugins to usual R packages as well,
using the same methods explained here). This should make it even easier to create a functioning
package, as long as you have a valid DESCRIPTION file and adhere to the file hierarchy explained
in previous sections.

The easiest way to actually build and test your plugin is to use the R command on the command
line, for example:

R CMD build SquaretheCircle

R CMD INSTALL SquaretheCircle_0.1-3.tar.gz

TIP
You do not have to build the package like this on the command line. If you use the function rk.build
.package() from the rkwarddev package, it will build and/or check your plugin package for you.
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Chapter 15

Plugin development with the
rkwarddev package

15.1 Overview

Writing external plugins involves writing files in three languages (XML, JavaScript and R) and
the creation of a standardized hierarchy of directories. To make this a lot easier for willing plugin
developers, we are providing the rkwarddev package. It provides a number of simple R func-
tions to create the XML code for all dialog elements like tabbooks, checkboxes, dropdownlists or
filebrowsers, as well as functions to create JavaScript code and RKWard help files to start with.
The function rk.plugin.skeleton() creates the expected directory tree and all necessary files
where they are supposed to be.

This package is not installed by default, but has to be installed manually from RKWard’s own
repository. You can either do that by using the GUI interface (Settings→ Configure packages),
or from any running R session:

install.packages("rkwarddev", repos="https://files.kde.org/rkward/R")
library(rkwarddev)

rkwarddev depends on another small package called ‘XiMpLe’, which is a very simple XML
parser and generator and also present in the same repository.

The full documentation in PDF format can also be found there. A more detailed introduction to
working with the package can be found in the rkwarddev vignette.

15.2 Practical example

To get you an idea how ‘scripting a plugin’ looks like, compared to the direct approach you have
seen in the previous chapters, we will create the full t-test plugin once again -- this time only with
the R functions of the rkwarddev package.

TIP
The package will add a new GUI dialog to RKWard under File→ Export→ Create RKWard plugin
script. Like the name suggests, you can create plugin skeletons for further editing with it. This dialog
itself was in turn generated by an rkwarddev script which you can find in the ‘demo’ directory of the
installed package and package sources, as an additional example. You can also run it by calling
demo(˝skeleton_dialog˝)
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15.2.1 GUI description

You will immediately notice that the workflow is considerably different: Contrary to writing
the XML code directly, you do not begin with the <document> definition, but directly with the
plugin elements you would like to have in the dialog. You can assign each interface element -- be
it check boxes, dropdown menus, variable slots or anything else -- to individual R objects, and
then combine these objects to the actual GUI. The package has functions for each XML tag that
can be used to define the plugin GUI, and most of them even have the same name, only with the
prefix rk.XML.*. For example, defining a <varselector> and two <varslot> elements for the ˝x˝
and ˝y˝ variable of the t-test example can be done by:

variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number", ←↩

required=TRUE , id.name="x")
var.y <- rk.XML.varslot("against", source=variables , types="number", ←↩

required=TRUE , id.name="y")

The most interesting detail is probably source=variables: A prominent feature of the package
is that all functions can generate automatic IDs, so you do not have to bother with either thinking
of id values or remembering them to refer to a specific plugin element. You can simply give the
R objects as reference, as all functions who need an ID from some other element can also read it
from these objects. rk.XML.varselector() is a little special, as it usually has no specific content
to make an ID from (it can, but only if you specify a label), so we have to set an ID name. But
rk.XML.varslot() would not need the id.name arguments here, so this would suffice:

variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number", ←↩

required=TRUE)
var.y <- rk.XML.varslot("against", source=variables , types="number", ←↩

required=TRUE)

In order to recreate the example code to the point, you would have to set all ID values manually.
But since the package shall make our lives easier, from now on we will no longer care about
that.

TIP
rkwarddev is capable of a lot of automation to help you build your plugins. However, it might be
preferable to not use it to its full extend. If your goal is to produce code that is not only working but
can also be easily read and compared to your generator script by a human being, you should consider
to always set useful IDs with id.name. Naming your R objects identical to these IDs will also help in
getting script code that is easy to understand.

If you want to see how the XML code of the defined element looks like if you exported it to a file,
you can just call the object by its name. So, if you now called ‘var.x’ in your R session, you should
see something like this:

<varslot id="vrsl_compare" label="compare" source="vars" types="number" ←↩
required="true" />

Some tags are only useful in the context of others. Therefore, for instance, you will not find
a function for the <option> tag. Instead, both radio buttons and dropdown lists are defined
including their options as a named list, where the names represent the labels to be shown in the
dialog, and their value is a named vector which can have two entries, val for the value of an
option and the boolean chk to specify if this option is checked by default.

test.hypothesis <- rk.XML.radio("using test hypothesis",
options=list(
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"Two-sided"=c(val="two.sided"),
"First is greater"=c(val="greater"),
"Second is greater"=c(val="less")

)
)

The result looks like this:

<radio id="rad_usngtsth" label="using test hypothesis">
<option label="Two-sided" value="two.sided" />
<option label="First is greater" value="greater" />
<option label="Second is greater" value="less" />

</radio >

All that is missing from the elements of the ‘Basic settings’ tab is the check box for paired samples,
and the structuring of all of these elements in rows and columns:

check.paired <- rk.XML.cbox("Paired sample", value="1", un.value="0")
basic.settings <- rk.XML.row(variables , rk.XML.col(var.x, var.y, test. ←↩

hypothesis , check.paired))

rk.XML.cbox() is a rare exception where the function name does not contain the full tag name, to
save some typing for this often used element. This is what basic.settings now contains:

<row id="row_vTFSPP10TF">
<varselector id="vars" />
<column id="clm_vrsTFSPP10">

<varslot id="vrsl_compare" label="compare" source="vars" types="number" ←↩
required="true" />

<varslot id="vrsl_against" label="against" i18n_context="compare ←↩
against" source="vars" types="number" required="true" />

<radio id="rad_usngtsth" label="using test hypothesis">
<option label="Two-sided" value="two.sided" />
<option label="First is greater" value="greater" />
<option label="Second is greater" value="less" />

</radio >
<checkbox id="chc_Pardsmpl" label="Paired sample" value="1" ←↩

value_unchecked ="0" />
</column >

</row>

In a similar manner, the next lines will create R objects for the elements of the ‘Options’ tab,
introducing functions for spinboxes, frames and stretch:

check.eqvar <- rk.XML.cbox("assume equal variances", value="1", un.value ←↩
="0")

conf.level <- rk.XML.spinbox("confidence level", min=0, max=1, initial ←↩
=0.95)

check.conf <- rk.XML.cbox("print confidence interval", val="1", chk=TRUE)
conf.frame <- rk.XML.frame(conf.level , check.conf , rk.XML.stretch(), label ←↩

="Confidence Interval")

Now all we need to do is to put the objects together in a tabbook, and place that in a dialog
section:

full.dialog <- rk.XML.dialog(
label="Two Variable t-Test",
rk.XML.tabbook(tabs=list("Basic settings"=basic.settings , "Options"=list( ←↩

check.eqvar , conf.frame)))
)
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We can also create the wizard section with its two pages using the same objects, so their IDs will
be extracted for the <copy> tags:

full.wizard <- rk.XML.wizard(
label="Two Variable t-Test",
rk.XML.page(

rk.XML.text("As a first step , select the two variables you want to ←↩
compare against

each other. And specify , which one you theorize to be greater. ←↩
Select two-sided ,

if your theory does not tell you, which variable is greater."),
rk.XML.copy(basic.settings)),

rk.XML.page(
rk.XML.text("Below are some advanced options. It is generally safe ←↩

not to assume the
variables have equal variances. An appropriate correction will be ←↩

applied then.
Choosing \"assume equal variances\" may increase test -strength , ←↩

however."),
rk.XML.copy(check.eqvar),
rk.XML.text("Sometimes it is helpful to get an estimate of the ←↩

confidence interval of
the difference in means. Below you can specify whether one should ←↩

be shown , and
which confidence -level should be applied (95% corresponds to a 5% ←↩

level of
significance)."),

rk.XML.copy(conf.frame)))

That is it for the GUI. The global document will be combined in the end by rk.plugin.skeleton
().

15.2.2 JavaScript code

Until now, using the rkwarddev package might not seem to have helped so much. This is going
to change right now.

First of all, just like we did not have to care about IDs for elements when defining the GUI layout,
we do not have to care about JavaScript variable names in the next step. If you want more control,
you can write plain JavaScript code and have it pasted to the generated file. But it is probably
much more efficient to do it the rkwarddev way.

Most notably you do not have to define any variable yourself, as rk.plugin.skeleton() can scan
your XML code and automatically define all variables you will probably need -- for instance, you
would not bother to include a check box if you do not use its value or state afterwards. So we can
start writing the actual R code generating JS immediately.

TIP
The function rk.JS.scan() can also scan existing XML files for variables.

The package has some functions for JS code constructs that are commonly used in RKWard plu-
gins, like the echo() function or if() {...} else {...} conditions. There are some differences
between JS and R, e.g., for paste() in R you use the comma to concatenate character strings,
whereas for echo() in JS you use ‘+’, and lines must end with a semicolon. By using the R func-
tions, you can almost forget about these differences and keep writing R code.

These functions can take different classes of input objects: Either plain text, R objects with XML
code like above, or in turn results of some other JS functions of the package. In the end, you will
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always call rk.paste.JS(), which behaves similar to paste(), but depending on the input objects
it will replace them with their XML ID, JavaScript variable name or even complete JavaScript
code blocks.
For the t-test example, we need two JS objects: One to calculate the results, and one to print them
in the printout() function:

JS.calc <- rk.paste.JS(
echo("res <- t.test (x=", var.x, ", y=", var.y, ", hypothesis=\"", test. ←↩

hypothesis , "\""),
js(

if(check.paired){
echo(", paired=TRUE")

},
if(!check.paired && check.eqvar){

echo(", var.equal=TRUE")
},
if(conf.level != "0.95"){

echo(", conf.level=", conf.level)
},
linebreaks=TRUE

),
echo(")\n"),
level=2

)

JS.print <- rk.paste.JS(echo("rk.print (res)\n"), level=2)

As you can see, rkwarddev also provides an R implementation of the echo() function. It returns
exactly one character string with a valid JS version of itself. You might also notice that all of the
R objects here are the ones we created earlier. They will automatically be replaced with their
variable names, so this should be quite intuitive. Whenever you need just this replacement, the
function id() can be used, which also will return exactly one character string from all the objects
it was given (you could say it behaves like paste() with a very specific object substitution).

The js() function is a wrapper that allows you to use R’s if(){...} else {...} conditions like you are
used to. They will be translated directly into JS code. It also preserves some operators like <, >=
or ||, so you can logically compare your R objects without the need for quoting most of the time.
Let’s have a look at the resulting ‘JS.calc’ object, which now contains a character string with this
content:

echo("res <- t.test (x=" + vrslCompare + ", y=" + vrslAgainst + ", ←↩
hypothesis =\"" + radUsngtsth + "\"");

if(chcPardsmpl) {
echo(", paired=TRUE");

} else {}
if(!chcPardsmpl && chcAssmqlvr) {

echo(", var.equal=TRUE");
} else {}
if(spnCnfdnclv != "0.95") {

echo(", conf.level=" + spnCnfdnclv);
} else {}
echo(")\n");

NOTE
Alternatively for if() conditions nested in js(), you can use the ite() function, which behaves
similar to R’s ifelse(). However, conditional statements constructed using ite() are usually harder
to read and should be replaced by js() whenever possible.
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15.2.3 Plugin map

This section is very short: We do not need to write a .pluginmap at all, as it can be generated
automatically by rk.plugin.skeleton(). The menu hierarchy can be specified via the pluginma
p option:

[...]
pluginmap=list(

name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test"))

[...]

15.2.4 Help page

This section is very short as well: rk.plugin.skeleton() cannot write a whole help page from
the information it has. But it can scan the XML document also for elements which probably
deserve a help page entry, and automatically create a help page template for our plugin. All we
have to do afterwards is to write some lines for each listed section.

TIP
The function rk.rkh.scan() can also scan existing XML files to create a help file skeleton.

15.2.5 Generate the plugin files

Now comes the final step, in which we will hand over all generated objects to rk.plugin.skelet
on():

plugin.dir <- rk.plugin.skeleton("t-Test",
xml=list(

dialog=full.dialog ,
wizard=full.wizard),

js=list(
results.header="Two Variable t-Test",
calculate=JS.calc ,
printout=JS.print),

pluginmap=list(
name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test")),

load=TRUE ,
edit=TRUE ,
show=TRUE)

The files will be created in a temporal directory by default. The last three options are not nec-
essary, but very handy: load=TRUE will automatically add the new plugin to RKWards config-
uration (since it is in a temp dir and hence will cease to exist when RKWard is closed, it will
automatically be removed again by RKWard during its next start), edit=TRUE will open all cre-
ated files for editing in RKWard editor tabs, and show=TRUE will attempt to directly launch the
plugin, so you can examine what it looks like without a click. You might consider adding over
write=TRUE if you are about to run your script repeatedly (e.g. after changes to the code), as by
default no files will be overwritten.
The result object ‘plugin.dir’ contains the path to the directory in which the plugin was created.
This can be useful in combination with the function rk.build.package(), to build an actual R
package to share your plugin with others -- e.g. by sending it to the RKWard development team
to be added to our plugin repository.
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15.2.6 The full script

To recapitulate all of the above, here is the full script to create the working t-test example. Adding
to the already explained code, it also loads the package if needed, and it uses the local() environ-
ment, so all the created objects will not end up in your current workspace (except for ‘plugin.dir’):

require(rkwarddev)

local({
variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number", ←↩

required=TRUE)
var.y <- rk.XML.varslot("against", source=variables , types="number", ←↩

required=TRUE)
test.hypothesis <- rk.XML.radio("using test hypothesis",

options=list(
"Two-sided"=c(val="two.sided"),
"First is greater"=c(val="greater"),
"Second is greater"=c(val="less")

)
)
check.paired <- rk.XML.cbox("Paired sample", value="1", un.value="0")
basic.settings <- rk.XML.row(variables , rk.XML.col(var.x, var.y, test. ←↩

hypothesis , check.paired))

check.eqvar <- rk.XML.cbox("assume equal variances", value="1", un.value ←↩
="0")

conf.level <- rk.XML.spinbox("confidence level", min=0, max=1, initial ←↩
=0.95)

check.conf <- rk.XML.cbox("print confidence interval", val="1", chk=TRUE)
conf.frame <- rk.XML.frame(conf.level , check.conf , rk.XML.stretch(), ←↩

label="Confidence Interval")

full.dialog <- rk.XML.dialog(
label="Two Variable t-Test",
rk.XML.tabbook(tabs=list("Basic settings"=basic.settings , "Options"= ←↩

list(check.eqvar , conf.frame)))
)

full.wizard <- rk.XML.wizard(
label="Two Variable t-Test",
rk.XML.page(

rk.XML.text("As a first step , select the two variables you want to ←↩
compare against

each other. And specify , which one you theorize to be greater. ←↩
Select two-sided ,

if your theory does not tell you, which variable is greater."),
rk.XML.copy(basic.settings)),

rk.XML.page(
rk.XML.text("Below are some advanced options. It is generally safe ←↩

not to assume the
variables have equal variances. An appropriate correction will be ←↩

applied then.
Choosing \"assume equal variances\" may increase test -strength , ←↩

however."),
rk.XML.copy(check.eqvar),
rk.XML.text("Sometimes it is helpful to get an estimate of the ←↩

confidence interval of
the difference in means. Below you can specify whether one should ←↩

70



Introduction to Writing Plugins for RKWard

be shown , and
which confidence -level should be applied (95% corresponds to a 5% ←↩

level of
significance)."),

rk.XML.copy(conf.frame)))

JS.calc <- rk.paste.JS(
echo("res <- t.test (x=", var.x, ", y=", var.y, ", hypothesis=\"", test ←↩

.hypothesis , "\""),
js(

if(check.paired){
echo(", paired=TRUE")
},
if(!check.paired && check.eqvar){
echo(", var.equal=TRUE")
},
if(conf.level != "0.95"){
echo(", conf.level=", conf.level)
},
linebreaks=TRUE

),
echo(")\n"), level=2)

JS.print <- rk.paste.JS(echo("rk.print (res)\n"), level=2)

plugin.dir <<- rk.plugin.skeleton("t-Test",
xml=list(

dialog=full.dialog ,
wizard=full.wizard),

js=list(
results.header="Two Variable t-Test",
calculate=JS.calc ,
printout=JS.print),

pluginmap=list(
name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test")),

load=TRUE ,
edit=TRUE ,
show=TRUE ,
overwrite=TRUE)

})

15.3 Adding help pages

If you want to write a help page for your plugin, the most straight forward way to do so is to add
the particular instructions directly to the definitions of the XML elements they belong to:

variables <- rk.XML.varselector(
id.name="vars",
help="Select the data object you would like to analyse.",
component="Data"

)

The text given to the help parameter can then be fetched by rk.rkh.scan() and written to the
help page of this plugin component. For this to work technically, however, rk.rkh.scan() must
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know which R objects belong to one plugin component. This is why you must also provide the
component parameter and make sure it is identical for all objects belonging together.

Since you will usually combine many objects into one dialog and might also like to be able to
re-use objects like the <varslot> in multiple components of your plugins, it is possible to globally
define a component with the rk.set.comp(). If set, it is assumed that all the following objects
used in your script belong to that particular component, until rk.set.comp() is being called again
with a different component name. You can then omit the component parameter:

rk.set.comp("Data")
variables <- rk.XML.varselector(

id.name="vars",
help="Select the data object you would like to analyse."

)

To add global sections like <summary> or <usage> to the help page, you use functions like rk.r
kh.summary() or rk.rkh.usage() accordingly. Their results are then used to set the list elements
like summary or usage in the rkh parameter of rk.plugin.component()/rk.plugin.skeleton().

15.4 Translating plugins

The rkwarddev package is capable of producing external plugins with full i18n support. For
instance, all relevant functions generating XML objects offer an optional parameter to specify
i18n_context or noi18n_label:

varComment <- rk.XML.varselector(id.name="vars", i18n=list(comment="Main ←↩
variable selector"))

varContext <- rk.XML.varselector(id.name="vars", i18n=list(context="Main ←↩
variable selector"))

cboxNoi18n <- rk.XML.cbox(label="Power", id.name="power", i18n=FALSE)

The above examples produce output like this:

# varComment
<!-- i18n: Main variable selector -->

<varselector id="vars" />

# varContext
<varselector id="vars" i18n_context="Main variable selector" />

# cboxNoi18n
<checkbox id="power" noi18n_label="Power" value="true" />

There is also support for translatable JS code. In fact, the package tries add i18n() calls by default
in places where this is usually helpful. The rk.JS.header() function is a good example:

jsHeader <- rk.JS.header("Test results")

This produces the following JS code:

new Header(i18n("Test results")).print();

But you can also manually mark strings in your JS code as translatable, by using the i18n()
function just like you would if you wrote the JS file directly.
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Appendix A

Reference

A.1 Types of properties/Modifiers

At some places in this introduction we have talked about ‘properties’ of GUI elements or other-
wise. In fact there are several different types of properties. Usually you do not need to worry
about this, as you can use common sense to connect any property to any other property. However,
internally, there are different types of properties. What this matters for, is when fetching some
special values in the JS-template. In getString (˝id˝)/getBoolean (˝id˝)/getList (˝id˝) statements
you can also specify some so called ‘modifiers’ like this: getString (˝id.modifier˝). This mod-
ifier will affect, in which way the value is printed. Read on for the list of properties, and the
modifiers they each make available:

String properties

The most simple type of property, used to simply hold a piece of text. Modifiers:

No modifier (˝˝)
The string as defined / set.

quoted
The string in quoted form (suitable for passing to R as character).

Boolean properties

Properties that can either be on or off, true or false. For instance the properties created by
<convert>-tags, also the property accompanying a <checkbox> (see below). The following
values will be returned according to the given modifier:

No modifier (˝˝)
By default the property will return 1 if it is true, and 0 otherwise. The recommended
way to fetch boolean values is using getBoolean(). Note that for getString(), the
string ˝0˝ will be returned when the property is false. This string would evaluate to
true, not to false in JS.

˝labeled˝
Returns the string ˝true˝ when true, ˝false˝, when false, or whichever custom strings
have been specified (typically in a <checkbox>).

˝true˝
Return the string as if the property was true, even if it is false

˝false˝
Return the string as if the property was false, even if it is true
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˝not˝
This actually returns another Boolean property, which is the reverse of the current (i.e.
false if true, true if false)

˝numeric˝
Obsolete, provided for backwards compatibility. Same as no modifier ˝˝. Return ˝1˝
if the property is true, or ˝0˝ if it is false.

Integer properties

A property designed to hold an integer value (but of course it still returns a numeric char-
acter string to the JS-template). It does not accept any modifiers. Used in <spinbox>es (see
below)

Real number properties

A property designed to hold a real number value (but of course it still returns a numeric
character string to the JS-template). Used in <spinbox>es (see below)

No modifier (˝˝)
For getValue() / getString(), this returns the same as ˝formatted˝. In future ver-
sions, it will be possible to obtain a numeric representation, instead.

˝formatted˝
Returns the formatted number (as a string).

RObject properties

A property designed a selection of one or more R objects. Used most prominently in varse-
lectors and varslots. The following values will be returned according to the given modifier:

No modifier (˝˝)
By default the property will return the full name of the selected object. If more than
one object is selected, the object names will be separated by line breaks (˝\n˝).

˝shortname˝
Like above, but returns only short name(s) for the object(s). For instance an object
inside a list would only be given the name it has inside the list, without the name of
the list.

˝label˝
Like above, but returns the RKWard label(s) of the object(s) (if no label available, this
is the same as shortname)

String list properties

This property holds a list of strings.

No modifier (˝˝)
For getValue()/getString(), this returns all strings separated by ˝\n˝. Any ˝\n˝
characters in each item are escaped as literal ˝\n˝. However, the recommended usage
is to fetch the value with getList(), instead, which will return an array of strings.

˝joined˝
Returns the list as a single string, with items joined by ˝\n˝. In contrast to no modifier
(˝˝), the individual strings are _not_ escaped.

Code properties

A property held by plugins that generated code. This is important for embedding plugins,
in order to embed the code generated by the embedded plugin into the code generated by
the embedding (top-level) plugin. The following values will be returned according to the
given modifier:
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No modifier (˝˝)
Returns the full code, i.e. the sections ˝preprocess˝, ˝calculate˝, ˝printout˝, and (but
not ˝preview˝) concatenated to one string.

˝preprocess˝
Returns only the preprocess section of the code

˝calculate˝
Returns only the calculate section of the code

˝printout˝
Returns only the printout section of the code

˝preview˝
Returns the preview section of the code

A.2 General purpose elements to be used in any XML file (.xml,
.rkh, .pluginmap)

<snippets>

Allowed as a direct child of the <document> node and only there. Should be placed near
the top of the file. See section on using snippets. Only one <snippets> element may be
present. Optional, no attributes.

<snippet>

Defines a single snippet. Allowed only as a direct child of the <snippets/> element. At-
tributes:

<id>
An identifier string for the snippet. Required.

<insert>
Insert the contents of a <snippet>. Allowed anywhere. Attributes:

<snippet>
The identifier string of the snippet to insert. Required.

<include>
Include the contents of another XML file (everything inside the <document> element of
that file). Allowed anywhere. Attributes:

<file>
The filename, relative to the directory, the current file is in. Required.

A.3 Elements to be used in the XML description of the plugin

Properties held by the elements are listed in a separate section.
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A.3.1 General elements

<document>
Needs to be present in each description.xml-file as the root-node. No special function. No
attributes

<about>
Information about this plugin (author, licence, etc.). This element is allowed in both an
individual plugin’s .xml file, and in .pluginmap files. Refer to the .pluginmap file reference
for reference details, the chapter on ’about’ information for an introduction.

<code>
Defines where to look for the JS template to the plugin. Use only once per file, as a direct
child of the document-tag. Attributes:

file
Filename of the JS template, relative to the directory the plugin-xml is in

<help>

Defines where to look for the help file for the plugin. Use only once per file, as a direct child
of the document-tag. Attributes:

file
Filename of the help file, relative to the directory the plugin-xml is in

<copy>

Can be used as a child (direct or indirect) of the main layout elements, i.e. <dialog> and
<wizard>. This is used to copy an entire block a XML elements 1:1. Attributes:

id
The ID to look for. The <copy> tag will look for a previous XML element that has
been given the same ID, and copy it including all descendant elements.

copy_element_tag_name

In some few cases, you will want an almost literal copy, but change the tag-name of
the element to copy. The most important example of this is, when you want to copy an
entire <tab> from a dialog interface to the <page> of a wizard interface. In this case,
you would set copy_element_tag_name=˝page˝ to do this conversion automatically.

A.3.2 Interface definitions

<dialog>

Defines a dialog-type interface. Place the GUI definition inside this tag. Use only once
per file, as a direct child of the document-tag. At least one of ˝dialog˝ or ˝wizard˝ tags is
required for a plugin. Attributes:

label
Caption for the dialog

recommended
Should the dialog be used as the ˝recommended˝ interface (i.e. the interface that will
be shown by default, unless the user has configured RKWard to default to a specific
interface)? This attribute does not currently have an effect, as it is implicitly ˝true˝,
unless the wizard is recommended.
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<wizard>
Defines a wizard-type interface. Place the GUI definition inside this tag. Use only once
per file, as a direct child of the document-tag. At least one of ˝dialog˝ or ˝wizard˝ tags is
required for a plugin. Accepts only <page> or <embed>-tags as direct children. Attributes:

label
Caption for the wizard

recommended
Should the wizard be used as the ˝recommended˝ interface (i.e. the interface that will
be shown by default, unless the user has configured RKWard to default to a specific
interface)? Optional, defaults to ˝false˝.

A.3.3 Layout elements

All elements in this section accept an attribute id=˝identifierstring˝. This attribute is optional for
all elements. It can be used, for example, to hide/disable the entire layout element and all the
elements contained therein (see chapter GUI logic). The id-string may not contain ˝.˝ (dot) or
˝;˝ (semicolon), and should generally be limited to alphanumeric characters and the underscore
(˝_˝). Only the additional attributes are listed.

<page>

Defines a new page inside a wizard. Only allowed as a direct child of a <wizard> element.

<row>
All direct children of a ˝row˝ tag will be placed left-to-right.

<column>
All direct children of a ˝column˝ tag will be placed top-to-bottom.

<stretch>
By default, elements in the GUI take up all the space that is available. For instance, if you
have two columns side by side, the left one is packed with elements, but the right one only
contains a lonely <radio>, the <radio> control will expand vertically, even though it does
not really need the available space, and it will look ugly. In this case you really want to
add a ˝blank˝ below the <radio>. For this, use the <stretch> element. It will simply use up
some space. Do not overuse this element, usually it is a good idea for GUI elements to get
all the available space, only sometimes will the layout become spaced out. The <stretch>
element does not take any arguments, not even an ˝id˝. Also you can place no children
inside the <stretch> element (in other words, you will only ever use it as ˝<stretch/>˝)

<frame>
Draws a frame/box around its direct children. Can be used to visually group related op-
tions. Layout inside a frame is top-to-bottom, unless you place a <row> inside. Attributes:

label
Caption for the frame (optional)

checkable
Frames can be made checkable. In this case, all contained elements will be disabled
when the frame is unchecked, and enabled, when it is checked. (optional, defaults to
˝false˝)

checked
For checkable frames only: Should the frame be checked by default? Defaults to
˝true˝. Not interpreted for non-checkable frames.

<tabbook>
Organizes elements in a tabbook. Accepts only <tab>-tags as direct children.
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<tab>
Defines a page in a tabbook. Place the GUI definition for the tab inside this tag. May be used
only as a direct child of a <tabbook> tag. A <tabbook> should have at least two defined
tabs. Attributes:

label
Caption for the tab page (required)

<text>
Shows the text enclosed in this tag in the GUI. Some simple HTML style markup is sup-
ported (notably <b>, <i>, <p>, and <br/>). Please keep formatting to a minimum, however.
Inserting a completely empty line adds a hard line break. Attributes:

type

Type of the text. One of ˝normal˝, ˝warning˝ or ˝error˝. This influences the look of
the text (optional, defaults to normal)

A.3.4 Active elements

All elements in this section accept an attribute id=˝identifierstring˝. This attribute is required for
all elements. Only the additional attributes are listed. The id-string may not contain ˝.˝ (dots).

<varselector>
Provides a list of available objects from which the user can select one or more. Requires one
or more <varslot>s as a counterpart to be useful. Attributes:

label
Label for the varselector (optional, defaults to ˝Select variable(s)˝)

<varslot>
Used in conjunction with a ˝varselector˝ to allow the user to select one or more variables.
Attributes:

label
Label for the varslot (recommended, defaults to ˝Variable:˝)

source
The varselector to fetch the selection from (required, unless you connect manually or
using source_property)

source_property

An arbitrary property to copy values from, when the select button is clicked. If speci-
fied, this overrides the ˝source˝-attribute.

required

Whether - for submitting the code - it is required that this varslot holds a valid value.
See required-property (optional, defaults to false)

multi
Whether the varslot holds only one (default, ˝false˝), or several objects

allow_duplicates

Whether the varslot may accept only unique objects (default, ˝false˝), or if the same
object may be added several times.

min_vars

Only meaningful if multi=˝true˝: Minimum number of vars to be selected for the
selection to be considered valid (optional, defaults to ˝1˝)
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min_vars_if_any

Only meaningful if multi=˝true˝: Some varslots may be considered valid, if, for in-
stance, the varslot is either empty, or holds at least two values. This specifies how
many variables have to be selected if any at all (2 in the example). (optional, defaults
to ˝1˝)

max_vars

Only meaningful if multi=˝true˝: Maximum number of variables to select (optional,
defaults to ˝0˝, which means no maximum)

classes
If you specify one or more R classnames (separated by spaces (˝ ˝)), here, the varslot
will only accept objects belonging to those classes (optional, use with great care, the
user should not be prevented from making valid choices, and R has a lot of different
classes)

types

If you specify one or more variables types (separated by spaces (˝ ˝)), here, the
varslot will only accept objects of those types. Valid types are ˝unknown˝, ˝number˝,
˝string˝, ˝factor˝, ˝invalid˝. (Optional, use with great care, the user should not be pre-
vented from making valid choices, and RKWard does not always know the type of a
variable)

num_dimensions

The number of dimensions, an object needs to have. ˝0˝ (the default) means, any
number of dimensions is acceptable. (optional, defaults to ˝0˝)

min_length

The minimum length, an object needs to have in order to be acceptable. (optional,
defaults to ˝0˝)

max_length

The maximum length, an object needs to have in order to be acceptable. (optional,
defaults to the largest integer number representable on the system)

<valueselector>
Provides a list of available strings (not R objects) to be selected in one or more accompany-
ing <valueslot>s. String options can be defined using <option>-tags as direct children (see
below), or set using dynamic properties. Attributes:

label
Label for the valueselector (optional, defaults to no label)

<valueslot>
Used in conjunction with a <valueselector> to allow the user to select one or more string
items. This element is mostly identical to <varslot>, and shares the same attributes,
except for those which refer to properties of the acceptable items (i.e. classes, types,
num_dimensions, min_length, max_length).

<radio>
Defines a group of radio-exclusive buttons (only one can be selected at a time). Requires
at least two <option>-tags as direct children. No other tags are allowed as children. At-
tributes:

label
Label for the radio control (recommended, defaults to ˝Select one:˝)

<dropdown>

Defines a group of options of which one and only one can be selected at the same time,
using a dropdown list. This is functionally equivalent to a <radio>, but looks different. Re-
quires at least two <option>-tags as direct children. No other tags are allowed as children.
Attributes:
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label
Label for the dropdown list (recommended, defaults to ˝Select one:˝)

<select>
Provides a list of available strings from which the user can select an arbitrary number.
String options can be defined using <option>-tags as direct children (see below), or set
using dynamic properties. Attributes:

label
Label for the <select> (optional, defaults to no label)

single
If set to true, only a single value will be selectable, instead of multiple values at once
(boolean, defaults to false)

<option>

Can only be used as a direct child of a <radio>, <dropdown>, <valueselector> or <select>
element. Represents one selectable option in a radio control or dropdown list. As <option>
elements are always part of one of the selection elements, they do not normally have an
˝id˝ of their own, but see below. Attributes:

label
Label for the option (required)

value
The string value the parent element will return if this option is checked/selected (re-
quired)

checked
Whether the option should be checked/selected by default ˝true˝ or ˝false˝. In a <ra-
dio> or <dropdown>, only one option may be set to checked=˝true˝ , and if no op-
tion is set to checked, the first option in the parent element will be checked/selected
automatically. In a <select>, any number of options may be set to checked. (optional,
default to ˝false˝)

id
Specifying the ˝id˝ parameter for the <option> elements is optional (and in fact it is
recommended, not to set an ˝id˝, unless you really need one). However, specifying
an ˝id˝ will allow you to enable/disable <option>s, dynamically, by connecting to the
boolean property id_of_radio.id_of_optionX.enabled. Currently this works for
options inside <radio> or <dropdown> elements, only; <valueselector> and <select>
options do not currently support ids.

<checkbox>
Defines a check box, i.e. a single option that can either be set to on or off. Attributes:

label
Label for the check box (required)

value
The value the check box will return if checked (required)

value_unchecked
The value that will be returned if the check box is not checked (optional, defaults to
˝˝, i.e. an empty string)

checked
Whether the option should be checked by default ˝true˝ or ˝false˝ (optional, default
to ˝false˝)

<frame>
The frame element is generally used as a pure layout element, and is listed in the section on
layout elements. However, it can also be made checkable, thus acting like a simple check
box at the same time.
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<input>

Defines a free text input field. Attributes:

label
Label for the input field (required)

initial
Initial text of the text field (optional, defaults to ˝˝, i.e. an empty string)

size
One of ˝small˝, ˝medium˝, or ˝large˝. ˝large˝ defines a multi-line input field,
˝small˝, and ˝medium˝ are single line fields (optional, defaults to ˝medium˝)

required
Whether - for submitting the code - it is required that this input is not empty. See
required-property (optional, defaults to false)

<matrix>
A table for entering matrix data (or vectors) in the GUI.

NOTE
This input element is not optimized for entering/editing large amounts of data. While there is no
strict limit on the size of a <matrix>, in general it should not exceed around ten rows / columns.
If you expect larger data, allow users to select it as an R object (which may be a good idea as
an alternative option, in almost every instance where you use a matrix element).

Attributes:

label
Label for the table (required)

mode
One of ˝integer˝, ˝real˝, or ˝string˝. The type of data that will be accepted in the table
(required)

min
Minimum acceptable value (for matrices of type ˝integer˝ or ˝real˝) (optional, de-
faults to the smallest representable value)

max
Maximum acceptable value (for matrices of type ˝integer˝ or ˝real˝) (optional, de-
faults to the largest representable value)

allow_missings
Whether missing (empty) values are allowed in the matrix. This is implied for matri-
ces or mode ˝string˝ (optional, defaults to false).

allow_user_resize_columns
When set to true, the user can add columns by typing on the rightmost (inactive) cells
(optional, defaults to true).

allow_user_resize_rows
When set to true, the user can add rows by typing on the bottommost (inactive) cells
(optional, defaults to true).

rows
Number of rows in the matrix. Has no effect for allow_user_resize_rows=˝true˝.

NOTE
This can also be controlled by setting the ˝rows˝ property.

(optional, defaults to 2).
columns

Number of columns in the matrix. Has no effect for al-
low_user_resize_columns=˝true˝.
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NOTE
This can also be controlled by setting the ˝columns˝ property.

(optional, defaults to 2).
min_rows

Minimum number of rows in the matrix. The matrix will refuse shrink below this
size. (optional, defaults to 0; see also: allow_missings.).

min_columns
Minimum number of columns in the matrix. The matrix will refuse shrink below this
size. (optional, defaults to 0; see also: allow_missings.).

fixed_height
Force the GUI element to stay at its initial height. Do not use in combination with
matrices, where the number of rows may change in any way. Useful, esp. when creat-
ing a vector input element (columns=˝1˝). With this option set to true, no horizontal
scroll bar will be shown, even in the matrix exceeds the available width (as this would
affect the height). (optional, defaults to false).

fixed_width
Slightly misnamed: Assume the column count will not change. The last (or typically
only) column will be stretched to take up the available width. Do not use in combi-
nation with matrices, where the number of columns may change in any way. Useful,
esp. when creating a vector input element (rows=˝1˝). (optional, defaults to false).

horiz_headers
Strings to use for the horizontal header, separated by ˝;˝. The header will be hidden,
if set to ˝˝. (optional, defaults to column number).

vert_headers
Strings to use for the vertical header, separated by ˝;˝. The header will be hidden, if
set to ˝˝. (optional, defaults to row number).

<optionset>

A UI for repeating a set of options for an arbitrary number of items (introduction to option-
sets). Attributes:

min_rows
If specified, the set will be marked invalid, unless it has at least this number of rows
(optional, integer).

min_rows_if_any
Like min_rows, but will only be tested, if there is at least one row (optional, integer).

max_rows
If specified, the set will be marked invalid, unless it has at most this number of rows
(optional, integer).

keycolumn
Id of the column to act as keycolumn. An optionset with a (valid) keycolumn will act
as a ˝driven˝ optionset. An optionset with no keycolumn will allow manual insertion
/ removal of items. The keycolumn must be marked as external. (optional, defaults
to no keycolumn).

Child-elements:

<optioncolumn>
Declares one optioncolumn of the set. For each value that you want to fetch from the
optionset, you must declare a separate <optioncolumn>. Attributes:

id
The id of the optioncolumn (required, string).

external
Set to true, if the optioncolumn is controlled from outside the optionset (op-
tional, boolean, defaults to false).
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label
If given, the optioncolumn will be displayed in a column by that label (optional,
string, defaults to not displayed).

connect
The property to connect this optioncolumn to, given as id inside the <content>-
area. For external <optioncolumn>s, the corresponding value will be set to the
externally set value. For regular (non-external) <optioncolumn>s, the corre-
sponding row of the <optioncolumn>-property, will be set when the property
changes inside the content-area. (optional, string, defaults to not connected).

default
Only for external columns: The value to assume for this column, if no value is
known for an entry. Rarely useful. (Optional, defaults to empty string)

<content>
Declare the content / UI of the set. No attributes. All usual active, passive, and
layout elements are allowed as childname elements. In addition, in earlier versions of
RKWard (up to 0.6.3), the special child-element <optiondisplay> was allowed. This
is obsolete in RKWard 0.6.4, and should simply be removed from existing plugins.

<logic>
Optional specification of UI logic to apply inside the contents region the optionset. See
the reference on <logic>

<browser>
An element designed to select a single filename (or directory name). Note that this field
will take any string, even though it is meant to be used for files, only:

label
Label for the browser (optional, defaults to ˝Enter filename˝)

initial
Initial text of the browser (optional, defaults to ˝˝, i.e. an empty string)

type

One of ˝file˝, ˝dir˝, or ˝savefile˝. To select an existing file, existing directory, or non-
existing file, respectively (optional, defaults to ˝file˝)

allow_urls

Whether (non-local) URLs can be selected (optional, defaults to ˝false˝)
filter

File type filter, e.g. (˝*.txt *.csv˝ for .txt and .csv files). A separate entry for ˝All files˝
is added, automatically (optional, defaults to ˝˝, i.e. All files)

required

Whether - for submitting the code - it is required that the field is not empty. Note
that this does not necessarily mean that the selected filename is valid. See required-
property (optional, defaults to true)

<saveobject>

An element designed to select the name of an R object to save to (i.e. generally not already
existing, in contrast to a varslot):

label
Label for the input (optional, defaults to ˝Save to:˝)

initial
Initial text of the input (optional, defaults to ˝my.data˝)

required

Whether - for submitting the code - it is required that the field holds a permissible
object name. See required-property (optional, defaults to true)
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checkable
In many use cases, saving to an R object is optional. In these cases, a check box can
be integrated into the saveobject-element using this attribute. When set to true, the
saveobject will be activated / deactivated by the check box. See the active-property
of saveobject (optional, defaults to false)

checked
For checkable saveobject-elements, only: Whether the control is checked/enabled by
default (optional, defaults to false)

<spinbox>

A spinbox in which the user can select a numeric value, using either direct keyboard input
or small up/down arrows. Attributes:

label
Label for the spinbox (recommend, default to ˝Enter value:˝)

min
The lowest value the user is allowed to enter in the spinbox (optional, defaults to the
lowest value technically representable in the spinbox)

max
The largest value the user is allowed to enter in the spinbox (optional, defaults to the
highest value technically representable in the spinbox)

initial
The initial value shown in the spinbox (optional, defaults to ˝0˝)

type

One of ˝real˝ or ˝integer˝. Whether the spinbox will accept real numbers or only
integers (optional, defaults to ˝real˝)

default_precision

Only meaningful if the spinbox is of type=˝real˝. Specifies the default number of dec-
imal places shown in the spinbox (only this many trailing zeros will be shown). When
the user presses the up/down arrows, this decimal place will be changed. The user
may still be able to enter values with a higher precision, however (see below) (op-
tional, defaults to ˝2˝)

max_precision

The maximum number of digits that can be meaningfully represented (optional, de-
faults to ˝8˝)

<formula>
This advanced element allows the user to select a formula/set of interactions from selected
variables. For instance for a GLM, this element can be used to allow the user to specify the
interaction-terms in the model. Attributes:

fixed_factors

The ID of the varslot holding the selected fixed factors (required)
dependent

The ID of the varslot holding the selected dependent variable (required)

<embed>
Embed a different plugin into this one (see chapter on embedding). Attributes:

component

The registered name of the component to embed (see chapter on registering compo-
nents) (required)

as_button

If set to ˝true˝, only a pushbutton will be placed in the embedding GUI, the embed-
ded GUI will only be shown (in a separate window) when the pushbutton is pressed
(optional, default is ˝false˝)
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label
Only meaningful if as_button=˝true˝: The label of the button (recommend, default is
˝Options˝)

<preview>

Checkbox to toggle preview functionality. Note that starting with version 0.6.5 of RKWard
<preview> preview elements are special- cased in plugin dialogs (not wizards): They will
be placed in the button-column, irrespective of where exactly they are defined in the UI. It is
still a good idea to define them at a sensible place in the layout, for backwards compatibility.
Attributes:

label
Label of the box (optional, default is ˝Preview˝)

mode
Type of preview. Supported types are ˝plot˝ (see chapter on graph previews),
˝output˝ (see chapter on (HTML) output previews), ˝data˝ (see data previews), and
˝custom˝ (see custom previews). (optional, default is ˝plot˝)

placement

Placement of the preview: ˝attached˝ (to the main workplace), ˝detached˝ (stan-
dalone window), ˝docked˝ (attached to the plugin dialog) and ˝default˝ (currently
this is the same as ˝docked˝, but might become user-configurable at some point). In
general, it is recommended to leave this as the default setting for best UI-consistency
(optional, default is ˝default˝)

active
Whether the preview is active by default. In general, only docked previews should
be made active by default, and even for these, there is a reason why the default is
in-active previews (optional, default is ˝false˝)

A.3.5 Logic section

<logic>

The containing element for the logic section. All elements below are allowed only inside
the <logic> element. The <logic> element is allowed only as a direct child of the <docu-
ment> element (at most once per document), or of <optionset> elements (at most once per
optionset). The document’s logic section applies to both <dialog> and <wizard> GUIs in
the same way.

<external>
Creates a new (string) property that is supposed to be connected to an outside property if
the plugin gets embedded. See section on ˝incomplete˝ plugins. Attributes:

id
The ID of the new property (required)

default
The default string value of the new property, i.e. the value used, if the property is not
connected to an outside property (optional, defaults to an empty string)

<i18n>
Creates a new (string) property that is supposed to be provide an i18n’ed label. Attributes:

id
The ID of the new property (required)

label
The label. This will be translated. (required)
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<set>
Set a property to a fixed value (of course, if you additionally connect the property to some
other property, the value does not remain fixed). For instance, if you embed a plugin, but
want to hide some of its elements, you might set the visibility property of those elements
to false. Useful esp. for embedded/embedding plugins. Note: If there are several <set>
elements for a single id, the latest one to be defined takes precedence. This will sometimes
be useful to rely on when using <include>d parts. Attributes:

id
The ID of the property to set (required)

to
The string value to set the property to (required). Note: For boolean properties such
as visibility, enabledness, you will typically set the to attribute to either to=˝true˝ or
to=˝false˝.

<convert>
Create a new boolean properties that depends on the state of one or more different proper-
ties. Attributes:

id
The ID of the new property (required)

sources
The ids of the properties this property will depend on. One or more properties may
be specified, separated by ˝;˝ (required)

mode
The mode of conversion/operation. One of ˝equals˝, ˝notequals˝, ˝range˝, ˝and˝,
˝or˝. If in mode equals, the property will only be true, if the value of all of its sources
equals the attribute standard (see below). If in at mode notequals, the property will
only be true, if the value of all of its sources are different from the attribute standard
(see below). If in mode range, the sources have to be numeric (integer or real). The
property will only be true, if all sources are in the range specified by the attributes
min and max (see below). If in mode and, the sources have to be boolean properties.
The property will only be true, if all the sources are true simultaneously. If in mode
or, the sources have to be boolean properties. The property will only be true, if at least
one of the sources is true. (required)

standard
Only meaningful in modes equals or notequals: the string value to compare against
(required if in one of these modes)

min
Only meaningful in mode range: the minimum value to compare against (optional,
defaults to the lowest floating point number representable on the machine)

max
Only meaningful in mode range: the maximum value to compare against (optional,
defaults to the largest floating point number representable on the machine)

require_true
If set to ˝true˝, the property will become required, and will only be considered valid,
if its state is true/on. Hence, if the property is false, it will block the Submit button
(optional, defaults to ˝false˝).

CAUTION
If you use this, make sure the user can easily detect what is wrong, such as by showing
an explanatory <text>.

<switch>
Create a new property that will relay to different target properties (or fixed strings) based
on the value of a condition property. This allows to create logic similar to if() or switch()
constructs. Attributes:
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id
The ID of the new property (required)

condition
The id of the condition property (required)

Child elements:

<true>
If the condition property is boolean, you can specify the two child elements <true>
and <false> (and only these). (Required, if <false> is also given)

<false>
If the condition property is boolean, you can specify the two child elements <true>
and <false> (and only these). (Required, if <true> is also given)

<case>
If the condition property is not boolean, you can supply an arbitrary number of
<case>-elements, one for each value of the condition property that you want to match
(at least one such element is required, if the condition property is not boolean)

<default>
If the condition property is not boolean, the optional <default>-element, allows to
specify the behavior, if no <case> element is matches the value of the condition prop-
erty (optional, allowed only once, in combination with one or more <case> elements).

Child elements <true>, <false>, <case>, and <default> take the following attributes:

standard
Only for <case>-elements: The value to match the condition property against (re-
quired, string).

fixed_value

A fixed string that should be supplied as the value of the <switch> property, if the
current condition matches (required, if dynamic_value is not supplied).

dynamic_value

The id of the target property that should be supplied as the value of the <switch>
property, if the current condition matches (required, if fixed_value is not supplied).

<connect>
Connects two properties. The client property will be changed whenever the governor prop-
erty changes (but not the other way around). Attributes:

client
The ID of the client property, i.e. the property that will be adjusted (required)

governor

The ID of the governor property, i.e. the property that will adjusts the client property.
This may include a modifier (required)

reconcile
If ˝true˝, the client property will make adjust the governor property on connection in
such a way that the governor property will only accept values that are also acceptable
by the client (e.g. suppose the governor is a numeric property with min value ˝0˝,
and the client is a numeric property with min value ˝100˝. The min of both properties
will be adjusted to 100, if reconcile=˝true˝). Generally works only for properties of
the same basic type (optional, default to ˝false˝)

<dependency_check>

Creates a boolean property that is true, if the specified dependencies are met, false other-
wise. The XML syntax of the element is the same as that of the <dependencies> element,
described in the .pluginmap reference. As of RKWard 0.6.1, only the RKWard and R version
specifications are taken into account, not dependencies on packages or pluginmaps.
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<script>

Define script code to control UI logic. See the section on scripted GUJI logic for details. The
script code to run can be given either using the ˝file˝ attribute, or as a (commented) text
of the element. The <script> element is not allowed in the <logic> section of an optionset.
Attributes:

file
File name of the script file. (required)

A.4 Properties of plugin elements

All layout elements, and all active elements hold the following properties, accessible via
˝id_of_element.name_of_property˝:

visible
Whether the GUI element is visible or not (boolean)

enabled
Whether the GUI element is enabled or not (boolean)

required

Whether the GUI element is required (to hold a valid setting) or not. Note that any element
which is disabled or hidden is also implicitly non-required (boolean).

In addition to this, some elements have additional properties you can connect to. Most active
elements also have a ˝default˝ property whose value will be returned on calls to getBoolean/ge
tString/getList (˝...˝), if no specific property was named, as described below.

<text>
Default property is text

text
The text displayed (text)

<varselector>
No default property

selected
The objects currently selected. You probably do not want to use this. Used internally
(RObject)

root
The root/parent object of the objects offered for selection (RObject)

<varslot>
Default property is ˝available˝

available
All objects held in the varslot (RObject)

selected
Of the objects held in the varslot, those that are currently selected. You probably do
not want to use this. Used internally (RObject)

source
A copy of the objects selected in the corresponding varselector. You probably do not
want to use this. Used internally (RObject)
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<valueselector>
Default property is ˝selected˝

selected
The strings currently selected. Modifier ˝labeled˝ to retrieve the corresponding labels.
In a <valueselector> you probably do not want to use this, directly (only in a <select>).
(read/write StringList)

available
The list of string values to select from. (read/write StringList)

labels
Labels to display for the string values. (read/write StringList)

<valueslot>
Same as <varslot>, but the properties are lists of strings, instead of RObjects.

<radio>
Default property is ˝string˝

string
The value of the currently selected option (string)

number
The number of the currently selected option (options are numbered top-to-bottom,
starting at 0) (integer)

<dropdown>

Same as <radio>

<select>
Same as <valueselector>

<option>

No default property. ˝enabled˝ is the *only* property, and it is not currently available
for options inside a <select> or <valueselector>. <option> does not have the ˝visible˝ or
˝required˝ properties.

enabled
Whether this single option should be enabled or disabled. In most cases you will
enable/disable the entire <radio< or <dropdown<, instead. But this can be used to
dynamically set the enabledness of a single option inside a <radio< or <dropdown<
(bool)

<checkbox>
Default property is ˝state.labeled˝, which means that the values specified by the value,
and value_unchecked-attributes are returned, not the displayed label of the check box.

state
State of the check box (on or off). Note that useful modifiers of this property (as of all
boolean properties) are ˝not˝ and ˝labeled˝ (see types of properties). However, often
it is most useful to connect to the property with no modifier, i.e. ˝checkbox_id.state˝,
which will return the state of the check box in a format suitable for use in an if state-
ment (0 or 1). (boolean)

<frame>
Default property is ˝checked˝, if - and only if - the frame is checkable. For non-checkable
frames, there is no default property.
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checked
Available for checkable frames, only: state of the check box (on or off). Note that use-
ful modifiers of this property (as of all boolean properties) are ˝not˝ and ˝numeric˝
(see types of properties). (boolean)

<input>

Default property is ˝text˝

text
Current text in the input field (string)

<matrix>
Default property is ˝cbind˝.

rows
Number of rows in the matrix (integer). If the matrix allows the user to add / re-
move rows, this property should be treated as read-only. Otherwise, changing it, will
change the size of the matrix.

columns
Number of columns in the matrix (integer). If the matrix allows the user to add /
remove columns, this property should be treated as read-only. Otherwise, changing
it, will change the size of the matrix.

tsv
Data in the matrix in tsv format (string; read-write). Note that compared to the usual
tsv layout, columns, not rows, are separated by newline characters, and cells within a
column are separated by tabulator characters.

0,1,2...
The data from a single column (0 for leftmost column). getValue()/getString()
returns this as a single string, separated by ˝\n˝. However, the recommended way to
get this is using getList(), which returns this column as an array of strings.

row.0,row.1,row.2...
The data from a single row (0 for topmost row). getValue()/getString() returns this
as a single string, separated by ˝\n˝. However, the recommended way to get this is
using getList(), which returns this row as an array of strings.

cbind
Data in a format suitable for pasting to R, wrapped in a cbind statement (string; read-
only).

<optionset>

No default property.

row_count
Number of items in the optionset (integer). Read-only.

current_row
Currently active item in the optionset (integer). -1 for no active item. Read-write.

optioncolumn_ids
For each <optioncolumn> you define, a string list property will be created with the
specified id.

<browser>
Default property is ˝selection˝

selection
Current text (selected file name) in the browser (string)
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<saveobject>

Default property is ˝selection˝

selection
Full name of the selected object (string; read-only - to set this programmatically, use
˝parent˝, and ˝objectname˝)

parent
The parent object of the selected object. This is always an existing R object of a type
that can contain other objects (e.g. a list or data.frame). When set to an empty string
or an invalid object, ˝.GlobalEnv˝ is assumed (RObject)

objectname
The base-name of the selected object, i.e. the string entered by the user (changed to a
valid R name, if necessary) (string)

active
For checkable saveobjects, only: Whether the control is checked/enabled. Always
true for non-checkable saveobjects (bool)

<spinbox>

Default property is either ˝int˝ or ˝real.formatted˝ depending on the spinbox’s mode

int
Integer value held by the spinbox, or nearest integer, if in real mode (integer)

real
Real value held by the spinbox (and integer, if in integer) (real)

<formula>
Default property is ˝model˝

model
The current model string (string)

table
The data.frame holding the required variables. If variables from only one data.frame
are used, the name of that data.frame is returned. Otherwise a new data.frame is
constructed as required (string)

labels
If variables from multiple data.frames are involved, their names may get mangled
(for instance, if both data.frames contain a variable named ˝x˝). This returns a list
with the mangled names as indices and the descriptive label as value (string)

fixed_factors
The fixed factors. You probably do not want to use this. Used internally (RObject)

dependent
The dependent variable(s). You probably do not want to use this. Used internally
(RObject)

<embed>
No default property

code
The code generated by the embedded plugin (code)

<preview>

Default property is ˝state˝
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state
Whether the preview box is checked (not necessarily whether the preview has already
been shown) (boolean)

<convert>
This element (used in the <logic> section) is special, in that is technically *is* a property,
instead of just holding one or more properties. It is of boolean kind. Note that useful
modifiers of this property (as of all boolean properties) are ˝not˝ and ˝numeric˝ (see types
of properties)

<switch>
This element (used in the <logic> section) is special, in that is technically *is* a (string)
property, instead of just holding one or more properties. It allows to switch between sev-
eral target properties depending on the value of a condition property, or to re-map values
of the condition property. Any modifiers that you supply are passed on to the target prop-
erties, thus, e.g. if all target properties are RObject properties, you can use the ˝shortname˝
modifier on the switch, too. However, if the target properties are of different types, using
modifiers may lead to errors. For fixed_values, any modifier is dropped, silently. Note
that target properties, when accessed through a switch, are always read-only.

A.5 Embeddable plugins shipped with the official RKWard re-
lease

A number of embeddable plugins is shipped with RKWard, and can be used in your own plugins.
Detailed documentation is currently available only in these plugins source or help files. However,
here is a list to give you a quick overview of what is available:

ID Pluginmap Description Example usage

rkward::plot_optio-
ns

embedded.pluginm-
ap

Provides a wide
range of options for
plots. Most plotting
plugins utilize this.

Plots->Barplot, most
other plotting
plugins

rkward::color_choo-
ser

embedded.pluginm-
ap

Very simple plugin
for specifying a
color. Current
implementation
provides a list of
color names. Future
implementations
may provide more
elaborate color
picking.

Plots->Histogram

rkward::plot_stepf-
un_options

embedded.pluginm-
ap

Step function plot
options Plots->ECDF plot

rkward::histogram-
_options

embedded.pluginm-
ap

Histogram (plot)
options Plots->Histogram

rkward::barplot_e-
mbed

embedded.pluginm-
ap Barplot options Plots->Barplot

rkward::one_var_ta-
bulation

embedded.pluginm-
ap

Provides tabulation
on a single variable. Plots->Barplot

rkward::limit_vecto-
r_length

embedded.pluginm-
ap

Limit the length of a
vector (to the n
largest or smallest
elements).

Plots->Barplot
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rkward::level_select embedded.pluginm-
ap

Provides a
<valueselector>
filled with the levels
(or unique values)
of a vector.

Data->Recode
Categorical data

rkward::multi_input embedded.pluginm-
ap

Combines spinbox,
input and radio
controls to provide
input for character,
numeric, logical
data.

Data->Recode
Categorical data

Table A.1: Standard embeddable plugins

A.6 Elements for use in .pluginmap files

<document>
Needs to be present in each .pluginmap file as the root-node (exactly once). Attributes:

base_prefix
Filenames specified in the .pluginmap file are assumed to be relative to the directory
of the .pluginmap file + the prefix you specify here. Useful, esp., if all your compo-
nents are located below a single subdirectory.

namespace
A namespace for the component ids. When looking up components for embedding,
the components will be retrievable via a string ˝namespace::component_id˝. Set to
˝rkward˝ for now.

id
An optional identifier string for this .pluginmap. Specifying this allows third authors
to refer to and load your .pluginmap from theirs (see chapter on handling dependen-
cies).

priority
One of ˝hidden˝ , ˝low˝ , ˝medium˝ , or ˝high˝ . .pluginmaps with priority ˝medium˝
or ˝high˝ are activated, automatically, when RKWard first finds them. Use priority
=˝hidden˝ for .pluginmaps that are not meant to be activated, directory (only meant
for inclusion). In the current implementation this does not actually hide the .plugin
map, however. (Optional, defaults to ˝medium˝).

<dependencies>

This element, specifying dependencies, is allowed as a direct child of the <document> el-
ement (once), and as a child of <component> elements (once for each <component> ele-
ment). Specifies the dependencies that must be met in order to use the plugin(s). See the
chapter on dependencies for an overview. Attributes:

rkward_min_version, rkward_max_version
Minimum and maximum allowed version of RKWard. Version specifications may
include non-numeric suffixes, like ˝0.5.7z-devel1˝. If a specified dependency is not
met, the plugin(s) it applies to will be ignored. More information. Optional; if not
specified, no minimum / maximum version of RKWard will be required.
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R_min_version, R_max_version
Minimum and maximum allowed version of R. Version specifications may not include
non-numeric suffixes, like ˝0.5.7z-devel1˝. The R version dependency will be shown
on the plugins’ help pages, but does not have any direct effect, as of RKWard 0.6.1.
More information. Optional; if not specified, no minimum / maximum version of R
will be required.

Child elements:

<package>
Adds a dependency on a specific R package. Attributes:

name
Package name (required).

min_version, max_version
Minimum / maximum allowed version (optional).

repository
Repository where the package can be found. Optional, but highly recom-
mended, if the package is not available on CRAN.

<pluginmap>
Adds a dependency on a specific RKWard .pluginmap. Attributes:

name
Id string of the required .pluginmap (required).

min_version, max_version
Minimum / maximum allowed version (optional).

url
URL where the .pluginmap can be found. Required.

<about>
May be present exactly once as a direct child of the <document> element. Contains meta
information on the .pluginmap (or plugin). See the chapter on ’about’ information for an
overview. Attributes:

name
User visible name. Optional. Does not have to be the same as the ˝id˝.

version
Version number. Optional. The format is not restricted, but to be on the safe side,
please follow common versioning schemes such as ˝x.y.z˝.

releasedate
Release date specification. Optional in format ˝YYYY-MM-DD˝.

shortinfo
A short description of the plugin / .pluginmap. Optional.

url
URL where more information can be found. Optional, but recommended.

copyright
Copyright specification, e.g. ˝2012-2013 by John Doe˝. Optional, but recommended.

licence
License specification, e.g. ˝GPL˝ or ˝BSD˝. Please make sure to accompany your files
with a complete copy of the relevant licence. Optional, but recommended.

category
Category of plugin(s), e.g. ˝Item response theory˝. As of RKWard 0.6.1, no categories
are predefined. Optional.

Child elements:
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<author>
Adds information on an author. Attributes:
name, given, family

Either specify the full name for name, or specify both given and family, sepa-
rately.

role
Author role description (optional).

email
E-mail address, where author can be contacted. Required. May be set to the
rkward-devel mailing list, if you are subscribed, and your plugin is meant to be
included in the official RKWard release.

url
URL with more information on the author, e.g. homepage (optional).

<components>

Needs to be present exactly once as a direct child of the <document> element. Contains the
individual <component>-elements described below. No attributes.

<component>

One or more <component> elements should be given as direct children of the <compo-
nents> element (and only there). Registers a component/plugin with rkward. Attributes:

type
For future extension: The type of component/plugin. Always set to ˝standard˝ for
now (the only type currently supported).

id
The ID by which this component can be retrieved (for placing it in the menu (see
below), or for embedding). See <document>-namespace above.

file
Required at least for components of type=˝standard˝: The filename of the XML file
describing the GUI.

label
The label for this component, when placed in the menu hierarchy.

<attribute>
Defines an attribute of a component. Only meaningful for import plugins so far. Only
allowed as a direct child of <component>. Attributes:

id
Id of the attribute

value
Value of the attribute

labels
Label associated with the attribute

<hierarchy>

Needs to be present exactly once as a direct child of the <document> element. Describes
where the components declared above should be placed in the menu hierarchy. Accepts
only <menu> elements as direct children. No attributes.

<menu>
One or more <menu> elements should be given as direct children of the <hierarchy> ele-
ment. Declares a new (sub-)menu. If a menu by the given ID (see below) already exists,
the two menus are merged. The <menu> element is allowed either as a direct child of the
<hierarchy> element (top level menu), or as the direct child on any other <menu> element
(sub-menu). Conversely, the <menu> element accepts other <menu> elements or <entry>
elements as children. Attributes:
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id
An identifier string of the menu. Useful, when menu definitions are read from several
.pluginmap files, to make sure plugins can be placed in the same menu(s). Some
menu-ids such as ˝file˝ refer to predefined menus (in this case the ˝File˝ menu). Be
sure to check with existing .pluginmap files to use consistent ids.

label
A label for the menu.

group
Allows to control ordering of menu entries. See menu item ordering. Optional.

<entry>

A menu entry, i.e. a menu option to invoke a plugin. May be used only as a direct child of
a <menu> element, accepts no child elements. Attributes:

component
The ID of the component that should be invoked, when this menu entry is activated.

group
Allows to control ordering of menu entries. See menu item ordering. Optional.

<group>

Declares a group of items in the menu. See menu item ordering. Attributes:

id
The name of this group.

separated
Optional. If set to ˝true˝ the item in this group will be visually separated from sur-
rounding items.

group
The name of the group to append this group to (optional).

<context>
Declares the entries in a context. Only allowed as a direct child of the <document> tag.
Accepts only <menu> tags as direct children. Attributes:

id
The ID of the context. Only two contexts are implemented so far: ˝x11˝ and ˝import˝.

<require>

Include another .pluginmap file. This .pluginmap file is only loaded once, even if it is
<require>d from several other files. The most important use case is to include a pluginmap
file, which declares some components, which are embedded by components declared in this
.pluginmap. <require>-elements are only allowed as direct children of the <document>-
node. Attributes:

file
The filename of the .pluginmap to include. This is seen relative to the directory of the
current .pluginmap file + the base_prefix (see above, <document>-element). If you do
not know the relative path to the .pluginmap to be included, use the map attribute to
refer to it by id, instead.

map
To include a .pluginmap file from a different package (or an RKWard .pluginmap from
your external .pluginmap), you can refer to it by its namespacename::id, as specified
in the required .pluginmaps <document> element. Inclusion will fail, if no .pluginm
ap by that id is known (e.g. not installed on the user’s system). You should use this
method for including .pluginmaps outside your package, only. For maps inside your
package, specifying a relative path (file attribute) is faster, and more reliable.
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A.7 Elements for use in .rkh (help) files

<document>
Needs to be present in each .xml file as the root-node (exactly once). No attributes.

<title>
Title of the help page. This is not interpreted for help pages for a plugin (this takes the title
from the plugin itself), only for stand-alone pages. No attributes. The text contained within
the <title> tag will become the caption of the help page. May only be defined once, as a
direct child of the <document> node.

<summary>

A short summary of the help page (or what this plugin is used for). This will always be
shown at the top of the help page. No attributes. The text contained within the <summary>
tag will be displayed. Recommended but not required. May only be defined once, as a
direct child of the <document> node.

<usage>

A slightly more elaborate summary of the usage. This will always be shown directly after
the <summary>. No attributes. The text contained within the <usage> tag will be dis-
played. Recommended for plugin help pages, but not required. May only be defined once,
as a direct child of the <document> node.

<section>
A general purposes section. May be used any number of times as a direct child of the
<document> node. These sections are displayed in the order of their definition, but all
after the <usage> section and before the <settings> section. The text contained within the
<section> tag will be displayed.

id
An identifier needed to jump to this section from the navigation bar (or a link). Needs
to be unique within the file. Required, no default.

title
The title (caption) of this section. Required, no default.

short_title
A short title suitable to be displayed in the navigation bar. Optional, defaults to the
full title.

<settings>

Defines the section containing reference on the various GUI settings. Only meaningful and
only used for plugin related help pages. Use as a direct child of the <document>. May
contain only <setting> and <caption> elements as direct children. No attributes.

<setting>

Explains a single setting in the GUI. Only allowed as a direct child of the <settings> element.
The text contained within the element is displayed.

id
The ID of the setting in the plugin .xml. Required, no default.

title
An optional title for the setting. If omitted (omission is recommended in most cases),
the title will be taken from the plugin .xml.

<caption>

A caption to visually group several settings. May only be used as a direct child of the
<settings> element.
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id
The ID of the corresponding element (typically a <frame>, <page> or <tab>) in the
plugin .xml.

title
An optional title for the caption. If omitted (omission is recommended in most cases),
the title will be taken from the plugin .xml.

<related>
Defines a section containing links to further related information. Will always be displayed
after the <settings> section. No attributes. The text contained within the <related> tag
will be displayed. Typically this will contain an HTML-style list. Recommended for plugin
help pages, but not required. May only be defined once, as a direct child of the <document>
node.

<technical>
Defines a section containing technical information of no relevance to end users (such as in-
ternal structure of the plugin). Will always be displayed last in a help page. No attributes.
The text contained within the <related> tag will be displayed. Not required, and not rec-
ommended for most plugin help pages. May only be defined once, as a direct child of the
<document> node.

<link>
A link. Can be used in any of the sections described above.

href
The target URL. Note that several RKWard specific URLs are available. See section on
writing help pages for details.

<label>
Inserts the value of a UI label. Can be used in any of the sections described above.

id
The id of the element in the plugin, of which to copy the label-attribute.

<various HTML tags>

Most basic HTML tags are allowed within the sections. Please keep manual formatting to a
minimum, however.

A.8 Functions available for GUI logic scripting

Class ˝Component˝

Class which represents a single component or component-property. The most important in-
stance of this class is the variable ˝gui˝ which is predefined as the root property of the cur-
rent component. The following methods are available for instances of class ˝Component˝:

absoluteId(base_id)
Returns the absolute ID of base_id, or - if base_id is omitted - the identifier of the
component.

getValue(id)
Discouraged. Use getString(), getBoolean(), or getList(), instead. Returns the
value of the given child property. Returns the value of this property, if ID is omitted.

getString(id)
Returns the value of the given child property as a string. Returns the value of this
property, if ID is omitted.
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getBoolean(id)
Returns the value of the given child property as a boolean (if possible). Returns the
value of this property, if ID is omitted.

getList(id)
Returns the value of the given child property as an array of strings (if possible). Re-
turns the value of this property, if ID is omitted.

setValue(id, value)
Set the value of the given child property to value.

getChild(id)
Return an instance of the child-property with the given id.

addChangeCommand(id, command)
Execute command whenever the child property given by id changes.

Class ˝RObject˝

Class which represents a single R object. An instance of this class can be obtained by us-
ing makeRObject(objectname). The following methods are available for instances of class
˝RObject˝:

WARNING
If any commands are still pending in the backend, the information provided by these methods
can be out-of-date by the time that the plugin code is run. Do not rely on it for critical operations
(risking loss of data).

getName()
Returns the absolute name of the object.

exists()
Returns whether the object exists. You should generally check this before using any
of the methods listed below.

dimensions()
Returns an array of dimensions (similar to dim() in R).

classes()
Returns an array of classes (similar to class() in R).

isClass(class)
Returns true, if the object is of class class.

isDataFrame()
Returns true, if the object is a data.frame.

isMatrix()
Returns true, if the object is a matrix.

isList()
Returns true, if the object is a list.

isFunction()
Returns true, if the object is a function.

isEnvironment()
Returns true, if the object is an environment.

isDataNumeric()
Returns true, if the object is a vector of numeric data.

isDataFactor()
Returns true, if the object is a vector of factor data.
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isDataCharacter()
Returns true, if the object is a vector of character data.

isDataLogical()
Returns true, if the object is a vector of logical data.

parent()
Returns an instance of ˝RObject˝ representing the parent of this object.

child(childname)
Returns an instance of ˝RObject˝ representing the child childname of this object.

Class ˝RObjectArray˝

An array of RObject instances. An instance of this class can be obtained by using makeROb-
jectArray(objectnames). It is particularly useful when dealing with varslots which allow
to select multiple objects.

include()-function
include(filename) can be used to include a separate JS file.

doRCommand()-function
doRCommand(command, callback) can be used to query R for information. Please read
the section on querying R from inside a plugin for details, and caveats.
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Appendix B

Troubleshooting during plugin
development

So you have read all the documentation, did everything right, and still cannot get it to work? Do
not worry, we will work it out. First thing to do is: Activate RKWard Debug Messages - window
(available from the Windows - menu, or right click on one of the tool bars), and then start your
plugin, again. As a general rule of thumb, you should not see any output in the messages window
when your plugin gets invoked, or at any other time. If there is one, it is likely related to your
plugin. See if it helps you.

If everything seems fine on the console, try to increase the debug-level (from the command line,
using rkward --debug-level 3, or by setting debug level to 3 in Settings→ Configure RKWard
→ Debug). Not all messages shown at higher debug levels necessarily indicate a problem, but
chance are, your problem shows up somewhere between the messages.

If you still cannot find out what is wrong, do not despair. We know this is complicated stuff, and
- after all - possibly you have also come across a bug in RKWard, and RKWard needs to be fixed.
Just write to the development mailing list, and tell us about the problem. We will be happy to
help you.

Finally, even if you found out how to do it on your own, but found the documentation to be
not-so-helpful or even wrong in some respects, please tell us on the mailing list as well, so we
can fix/improve the documentation.
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Appendix C

License

This documentation is licensed under the terms of the GNU Free Documentation License.
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